657 research outputs found

    Deformation and Failure of Amorphous Solidlike Materials

    Full text link
    Since the 1970's, theories of deformation and failure of amorphous, solidlike materials have started with models in which stress-driven, molecular rearrangements occur at localized flow defects via "shear transformations". This picture is the basis for the modern theory of "shear transformation zones" (STZ's), which is the focus of this review. We begin by describing the structure of the theory in general terms and by showing several applications, specifically: interpretation of stress-strain measurements for a bulk metallic glass, analysis of numerical simulations of shear banding, and the use of the STZ equations of motion in free-boundary calculations. In the second half of this article, we focus for simplicity on what we call an "athermal" model of amorphous plasticity, and use that model to illustrate how the STZ theory emerges within a systematic formulation of nonequilibrium thermodynamics.Comment: 28 pages, 4 figures, submitted to Annual Reviews of Condensed Matter Physic

    Convergence rate of dimension reduction in Bose-Einstein condensates

    Full text link
    In this paper, we study dimension reduction of the three-dimensional (3D) Gross-Pitaevskii equation (GPE) modelling Bose-Einstein condensation under different limiting interaction and trapping frequencies parameter regimes. Convergence rates for the dimension reduction of 3D ground state and dynamics of the GPE in the case of disk-shaped condensation and cigar-shaped condensation are reported based on our asymptotic and numerical results. In addition, the parameter regimes in which the 3D GPE cannot be reduced to lower dimensions are identified.Comment: 27pages; 9 figure

    Evaluation of Residual Stress in 300m Steels Using Magnetization, Barkhausen Effect and X-Ray Diffraction Techniques

    Get PDF
    This investigation was undertaken to compare the techniques of x-ray diffraction, Barkhausen effect and magnetization measurement as methods of nondestructive evaluation of stress in shot peened 300M steel. In particular we were concerned with the estimation of the level of prevailing applied stress and the compressive overload (plastic deformation) which the samples had been subjected to. The 300M steel used in this study is a constructional material for the landing gears of aircraft, and as these components will eventually experience fatigue failure if not replaced, it was of interest to develop NDE techniques for the assessment of the mechanical condition of landing gears of in-service aircraft

    Why shot noise does not generally detect pairing in mesoscopic superconducting tunnel junctions

    Full text link
    The shot noise in tunneling experiments reflects the Poissonian nature of the tunneling process. The shot noise power is proportional to both the magnitude of the current and the effective charge of the carrier. Shot-noise spectroscopy thus enables - in principle - to determine the effective charge q of the charge carriers that tunnel. This can be used to detect electron pairing in superconductors: in the normal state, the noise corresponds to single electron tunneling (q = 1e), while in the paired state, the noise corresponds to q = 2e, because of Andreev reflections. Here, we use a newly developed amplifier to reveal that in typical mesoscopic superconducting junctions, the shot noise does not reflect the signatures of pairing and instead stays at a level corresponding to q = 1e. We show that transparency can control the shot noise and this q = 1e is due to the large number of tunneling channels with each having very low transparency. At such transparencies, the shot noise in the junction resembles that of a metallic instead of a superconducting tunnel junction. Our results indicate that in typical mesoscopic superconducting junctions one should expect q = 1e noise, and lead to design guidelines for junctions that allow the detection of electron pairing

    Non-small cell lung carcinoma in an adolescent manifested by acute paraplegia due to spinal metastases: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Bronchial carcinomas in childhood and adolescence are extremely rare; only individual cases have been reported previously.</p> <p>Case presentation</p> <p>We report on a 16-year-old Caucasian German boy with non-small cell lung carcinoma (squamous cell non-small cell lung carcinoma) stage IV, T4N2M1, without epidermal growth factor receptor overexpression and/or mutation or k-ras mutation. He presented with paraplegia due to spinal metastases of the bronchial carcinoma. No familial predisposition or toxin exposure was identified. Treatment following adult protocols consisted of surgical intervention for spinal metastases, first-line cisplatinum and gemcitabine, irradiation and second-line docetaxel. After a transient response our patient experienced disease progression and died about 10 months later.</p> <p>Conclusion</p> <p>Response and survival in our 16-year-old patient were similar to adult patients with stage IV non-small cell lung carcinoma.</p

    Cell arrest and cell death in mammalian preimplantation development

    Get PDF
    The causes, modes, biological role and prospective significance of cell death in preimplantation development in humans and other mammals are still poorly understood. Early bovine embryos represent a very attractive experimental model for the investigation of this fundamental and important issue. To obtain reference data on the temporal and spatial occurrence of cell death in early bovine embryogenesis, three-dimensionally preserved embryos of different ages and stages of development up to hatched blastocysts were examined in toto by confocal laser scanning microscopy. In parallel, transcript abundance profiles for selected apoptosis-related genes were analyzed by real-time reverse transcriptase-polymerase chain reaction. Our study documents that in vitro as well as in vivo, the first four cleavage cycles are prone to a high failure rate including different types of permanent cell cycle arrest and subsequent non-apoptotic blastomere death. In vitro produced and in vivo derived blastocysts showed a significant incidence of cell death in the inner cell mass (ICM), but only in part with morphological features of apoptosis. Importantly, transcripts for CASP3, CASP9, CASP8 and FAS/FASLG were not detectable or found at very low abundances. In vitro and in vivo, errors and failures of the first and the next three cleavage divisions frequently cause immediate embryo death or lead to aberrant subsequent development, and are the main source of developmental heterogeneity. A substantial occurrence of cell death in the ICM even in fast developing blastocysts strongly suggests a regular developmentally controlled elimination of cells, while the nature and mechanisms of ICM cell death are unclear. Morphological findings as well as transcript levels measured for important apoptosis-related genes are in conflict with the view that classical caspase-mediated apoptosis is the major cause of cell death in early bovine development

    Dense matter with eXTP

    Full text link
    In this White Paper we present the potential of the Enhanced X-ray Timing and Polarimetry (eXTP) mission for determining the nature of dense matter; neutron star cores host an extreme density regime which cannot be replicated in a terrestrial laboratory. The tightest statistical constraints on the dense matter equation of state will come from pulse profile modelling of accretion-powered pulsars, burst oscillation sources, and rotation-powered pulsars. Additional constraints will derive from spin measurements, burst spectra, and properties of the accretion flows in the vicinity of the neutron star. Under development by an international Consortium led by the Institute of High Energy Physics of the Chinese Academy of Science, the eXTP mission is expected to be launched in the mid 2020s.Comment: Accepted for publication on Sci. China Phys. Mech. Astron. (2019

    Interaction of ultrasound with imperfectly contacting interfaces

    Get PDF
    The need to characterize imperfectly contacting interfaces is encountered in a wide variety of scientific and engineering problems, as illustrated in Fig. 1. Parts (a)–(c) illustrate the stages of diffusion bonding, [1,2] in which the condition of the interface evolves from one of isolated contacts at the initial stages of bonding through one containing distributed micropores, which exist during intermediate stages, to a state in which the material is fully bonded but in which there may be some near-interface microstructural variations. The ability to determine the degree to which bonding has passed through these conditions is presently needed in NDE of products after manufacturing and could be extended to process control if appropriate in-situ sensors were available. Part (d) illustrates the partial contact that can occur during fatigue crack growth [3]. Ideally, one might think of the surfaces of the fatigue crack as being free of stress. However, plastic deformation of ligaments during the failure process, motion of oxide debris, and shearing of the two faces of the crack can all lead isolated regions of contact along the crack face. These contacts are important in the fracture process since they can influence the loads which act on the tip of the crack during fatigue. From the NDE perspective, they can influence the strength of an ultrasonic signal which might be scattered by the crack. Part (e) illustrates a classical problem in tribology. Knowledge of the true area of contact between two surfaces is an essential ingredient in relating macroscopic variables such as applied force to the microscopic force and deformation distributions that exist at the interface [4]. Finally, as shown in part (f), interface design is an important aspect of the development of advanced engineering materials such as composites. It is often desirable to control the mechanical behavior of the interface is such a way that the overall response of the material is optimized, and the presence of pores, precipitates or other impurities may play an important role in controlling this interface behavior. Nondestructive characterization of such interfacial conditions is important in both ensuring the quality of material after fabrication and in assessing the degree to which service induced damage has occurred

    Biomarker discovery and redundancy reduction towards classification using a multi-factorial MALDI-TOF MS T2DM mouse model dataset

    Get PDF
    Diabetes like many diseases and biological processes is not mono-causal. On the one hand multifactorial studies with complex experimental design are required for its comprehensive analysis. On the other hand, the data from these studies often include a substantial amount of redundancy such as proteins that are typically represented by a multitude of peptides. Coping simultaneously with both complexities (experimental and technological) makes data analysis a challenge for Bioinformatics
    corecore