39 research outputs found
Giant half-cycle attosecond pulses
Half-cycle picosecond pulses have been produced from thin photo-conductors,
when applying an electric field across the surface and switching on conduction
by a short laser pulse. Then the transverse current in the wafer plane emits
half-cycle pulses in normal direction, and pulses of 500 fs duration and 1e6
V/m peak electric field have been observed. Here we show that single half-cycle
pulses of 50 as duration and up to 1e13 V/m can be produced when irradiating a
double foil target by intense few-cycle laser pulses. Focused onto an
ultra-thin foil, all electrons are blown out, forming a uniform sheet of
relativistic electrons. A second layer, placed at some distance behind,
reflects the drive beam, but lets electrons pass straight. Under oblique
incidence, beam reflection provides the transverse current, which emits intense
half-cycle pulses. Such a pulse may completely ionize even heavier atoms. New
types of attosecond pump-probe experiments will become possible.Comment: 5 pages, 4 figures, to be presented at LEI2011-Light at Extreme
Intensities and China-Germany Symposium on Laser Acceleratio
Viewing the body modulates both pain sensations and pain responses
Viewing the body can influence pain perception, even when vision is non-informative about the noxious stimulus. Prior studies used either continuous pain rating scales or pain detection thresholds, which cannot distinguish whether viewing the body changes the discriminability of noxious heat intensities or merely shifts reported pain levels. In Experiment 1, participants discriminated two intensities of heat-pain stimulation. Noxious stimuli were delivered to the hand in darkness immediately after participants viewed either their own hand or a non-body object appearing in the same location. The visual condition varied randomly between trials. Discriminability of the noxious heat intensities (d?) was lower after viewing the hand than after viewing the object, indicating that viewing the hand reduced the information about stimulus intensity available within the nociceptive system. In Experiment 2, the hand and the object were presented in separate blocks of trials. Viewing the hand shifted perceived pain levels irrespective of actual stimulus intensity, biasing responses toward âhigh painâ judgments. In Experiment 3, participants saw the noxious stimulus as it approached and touched their hand or the object. Seeing the pain-inducing event counteracted the reduction in discriminability found when viewing the hand alone. These findings show that viewing the body can affect both perceptual processing of pain and responses to pain, depending on the visual context. Many factors modulate pain; our study highlights the importance of distinguishing modulations of perceptual processing from modulations of response bias
Influence of Body Position on Cortical Pain-Related Somatosensory Processing: An ERP Study
Background: Despite the consistent information available on the physiological changes induced by head down bed rest, a condition which simulates space microgravity, our knowledge on the possible perceptual-cortical alterations is still poor. The present study investigated the effects of 2-h head-down bed rest on subjective and cortical responses elicited by electrical, pain-related somatosensory stimulation. Methodology/Principal Findings: Twenty male subjects were randomly assigned to two groups, head-down bed rest (BR) or sitting control condition. Starting from individual electrical thresholds, Somatosensory Evoked Potentials were elicited by electrical stimuli administered randomly to the left wrist and divided into four conditions: control painless condition, electrical pain threshold, 30 % above pain threshold, 30 % below pain threshold. Subjective pain ratings collected during the EEG session showed significantly reduced pain perception in BR compared to Control group. Statistical analysis on four electrode clusters and sLORETA source analysis revealed, in sitting controls, a P1 component (40â50 ms) in the right somatosensory cortex, whereas it was bilateral and differently located in BR group. Controls â N1 (80â90 ms) had widespread right hemisphere activation, involving also anterior cingulate, whereas BR group showed primary somatosensory cortex activation. The P2 (190â220 ms) was larger in left-central locations of Controls compared with BR group. Conclusions/Significance: Head-down bed rest was associated to an overall decrease of pain sensitivity and an altered pai
Role of the plasma scale length in the harmonic generation from solid targets
We have investigated the generation of high harmonics from the interaction of 150 fsec, 790 nm, and 395 nm laser pulses with solid targets. Experiments are presented that demonstrate a strong dependence of the conversion efficiency on the temporal pulse shape and the resulting density scale length (L/λ) of the preformed plasma. The highest conversion efficiencies are achieved for short density scale lengths (L/λ †0.4), which result from high contrast ratio pulse interactions