33 research outputs found

    Giant half-cycle attosecond pulses

    Full text link
    Half-cycle picosecond pulses have been produced from thin photo-conductors, when applying an electric field across the surface and switching on conduction by a short laser pulse. Then the transverse current in the wafer plane emits half-cycle pulses in normal direction, and pulses of 500 fs duration and 1e6 V/m peak electric field have been observed. Here we show that single half-cycle pulses of 50 as duration and up to 1e13 V/m can be produced when irradiating a double foil target by intense few-cycle laser pulses. Focused onto an ultra-thin foil, all electrons are blown out, forming a uniform sheet of relativistic electrons. A second layer, placed at some distance behind, reflects the drive beam, but lets electrons pass straight. Under oblique incidence, beam reflection provides the transverse current, which emits intense half-cycle pulses. Such a pulse may completely ionize even heavier atoms. New types of attosecond pump-probe experiments will become possible.Comment: 5 pages, 4 figures, to be presented at LEI2011-Light at Extreme Intensities and China-Germany Symposium on Laser Acceleratio

    Influence of Body Position on Cortical Pain-Related Somatosensory Processing: An ERP Study

    Get PDF
    Background: Despite the consistent information available on the physiological changes induced by head down bed rest, a condition which simulates space microgravity, our knowledge on the possible perceptual-cortical alterations is still poor. The present study investigated the effects of 2-h head-down bed rest on subjective and cortical responses elicited by electrical, pain-related somatosensory stimulation. Methodology/Principal Findings: Twenty male subjects were randomly assigned to two groups, head-down bed rest (BR) or sitting control condition. Starting from individual electrical thresholds, Somatosensory Evoked Potentials were elicited by electrical stimuli administered randomly to the left wrist and divided into four conditions: control painless condition, electrical pain threshold, 30 % above pain threshold, 30 % below pain threshold. Subjective pain ratings collected during the EEG session showed significantly reduced pain perception in BR compared to Control group. Statistical analysis on four electrode clusters and sLORETA source analysis revealed, in sitting controls, a P1 component (40–50 ms) in the right somatosensory cortex, whereas it was bilateral and differently located in BR group. Controls ’ N1 (80–90 ms) had widespread right hemisphere activation, involving also anterior cingulate, whereas BR group showed primary somatosensory cortex activation. The P2 (190–220 ms) was larger in left-central locations of Controls compared with BR group. Conclusions/Significance: Head-down bed rest was associated to an overall decrease of pain sensitivity and an altered pai

    Self-generated sounds of locomotion and ventilation and the evolution of human rhythmic abilities

    Get PDF

    Role of the plasma scale length in the harmonic generation from solid targets

    No full text
    We have investigated the generation of high harmonics from the interaction of 150 fsec, 790 nm, and 395 nm laser pulses with solid targets. Experiments are presented that demonstrate a strong dependence of the conversion efficiency on the temporal pulse shape and the resulting density scale length (L/λ) of the preformed plasma. The highest conversion efficiencies are achieved for short density scale lengths (L/λ ≀ 0.4), which result from high contrast ratio pulse interactions

    First milestone on the path toward a table-top free-electron laser (FEL)

    Get PDF
    Latest developments in the field of laser-wakefield accelerators (LWFAs) have led to relatively stable electron beams in terms of peak energy, charge, pointing and divergence from mmsized accelerators. Simulations and LWFA theory indicate that these beams have low transverse emittances and ultrashort bunch durations on the order of ∌ 10 fs. These features make LWFAs perfectly suitable for driving high-brightness X-ray undulator sources and free-electron lasers (FELs) on a university-laboratory scale.With the detection of soft-X-ray radiation from an undulator source driven by laser-wakefield accelerated electrons, we succeeded in achieving a first milestone on this path. The source delivers remarkably stable photon beams which is mainly due to the stable electron beam and our miniature magnetic quadrupole lenses, which significantly reduce its divergence and angular shot-to-shot variation. An increase in electron energy allows for compact, tunable, hard-Xray undulator sources. Improvements of the electron beams in terms of charge and energy spread will put table-top FELs within reach. © 2010 American Institute of Physids
    corecore