60 research outputs found

    Defending the genome from the enemy within:mechanisms of retrotransposon suppression in the mouse germline

    Get PDF
    The viability of any species requires that the genome is kept stable as it is transmitted from generation to generation by the germ cells. One of the challenges to transgenerational genome stability is the potential mutagenic activity of transposable genetic elements, particularly retrotransposons. There are many different types of retrotransposon in mammalian genomes, and these target different points in germline development to amplify and integrate into new genomic locations. Germ cells, and their pluripotent developmental precursors, have evolved a variety of genome defence mechanisms that suppress retrotransposon activity and maintain genome stability across the generations. Here, we review recent advances in understanding how retrotransposon activity is suppressed in the mammalian germline, how genes involved in germline genome defence mechanisms are regulated, and the consequences of mutating these genome defence genes for the developing germline

    The role of pro- and anti-inflammatory responses in silica-induced lung fibrosis

    Get PDF
    BACKGROUND: It has been generally well accepted that chronic inflammation is a necessary component of lung fibrosis but this concept has recently been challenged. METHODS: Using biochemical, histological, immunohistochemistry, and cellular analyses, we compared the lung responses (inflammation and fibrosis) to fibrogenic silica particles (2.5 and 25 mg/g lung) in Sprague-Dawley rats and NMRI mice. RESULTS: Rats treated with silica particles developed chronic and progressive inflammation accompanied by an overproduction of TNF-α as well as an intense lung fibrosis. Dexamethasone or pioglitazone limited the amplitude of the lung fibrotic reaction to silica in rats, supporting the paradigm that inflammation drives lung fibrosis. In striking contrast, in mice, silica induced only a limited and transient inflammation without TNF-α overproduction. However, mice developed lung fibrosis of a similar intensity than rats. The fibrotic response in mice was accompanied by a high expression of the anti-inflammatory and fibrotic cytokine IL-10 by silica-activated lung macrophages. In mice, IL-10 was induced only by fibrotic particles and significantly expressed in the lung of silica-sensitive but not silica-resistant strains of mice. Anti-inflammatory treatments did not control lung fibrosis in mice. CONCLUSION: These results indicate that, beside chronic lung inflammation, a pronounced anti-inflammatory reaction may also contribute to the extension of silica-induced lung fibrosis and represents an alternative pathway leading to lung fibrosis

    Bi-directional cell-pericellular matrix interactions direct stem cell fate

    Get PDF
    Modifiable hydrogels have revealed tremendous insight into how physical characteristics of cells’ 3D environment drive stem cell lineage specification. However, in native tissues, cells do not passively receive signals from their niche. Instead they actively probe and modify their pericellular space to suit their needs, yet the dynamics of cells’ reciprocal interactions with their pericellular environment when encapsulated within hydrogels remains relatively unexplored. Here, we show that human bone marrow stromal cells (hMSC) encapsulated within hyaluronic acid-based hydrogels modify their surroundings by synthesizing, secreting and arranging proteins pericellularly or by degrading the hydrogel. hMSC’s interactions with this local environment have a role in regulating hMSC fate, with a secreted proteinaceous pericellular matrix associated with adipogenesis, and degradation with osteogenesis. Our observations suggest that hMSC participate in a bi-directional interplay between the properties of their 3D milieu and their own secreted pericellular matrix, and that this combination of interactions drives fate

    Genome-wide autozygosity is associated with lower general cognitive ability

    Get PDF
    Inbreeding depression refers to lower fitness among offspring of genetic relatives. This reduced fitness is caused by the inheritance of two identical chromosomal segments (autozygosity) across the genome, which may expose the effects of (partially) recessive deleterious mutations. Even among outbred populations, autozygosity can occur to varying degrees due to cryptic relatedness between parents. Using dense genome-wide single-nucleotide polymorphism (SNP) data, we examined the degree to which autozygosity associated with measured cognitive ability in an unselected sample of 4854 participants of European ancestry. We used runs of homozygosity—multiple homozygous SNPs in a row—to estimate autozygous tracts across the genome. We found that increased levels of autozygosity predicted lower general cognitive ability, and estimate a drop of 0.6 s.d. among the offspring of first cousins (P=0.003–0.02 depending on the model). This effect came predominantly from long and rare autozygous tracts, which theory predicts as more likely to be deleterious than short and common tracts. Association mapping of autozygous tracts did not reveal any specific regions that were predictive beyond chance after correcting for multiple testing genome wide. The observed effect size is consistent with studies of cognitive decline among offspring of known consanguineous relationships. These findings suggest a role for multiple recessive or partially recessive alleles in general cognitive ability, and that alleles decreasing general cognitive ability have been selected against over evolutionary time

    Genetic foundations of human intelligence

    Get PDF

    Restricting retrotransposons: a review

    Get PDF

    Outpatient Prescribing Errors and the Impact of Computerized Prescribing

    No full text
    BACKGROUND: Medication errors are common among inpatients and many are preventable with computerized prescribing. Relatively little is known about outpatient prescribing errors or the impact of computerized prescribing in this setting. OBJECTIVE: To assess the rates, types, and severity of outpatient prescribing errors and understand the potential impact of computerized prescribing. DESIGN: Prospective cohort study in 4 adult primary care practices in Boston using prescription review, patient survey, and chart review to identify medication errors, potential adverse drug events (ADEs) and preventable ADEs. PARTICIPANTS: Outpatients over age 18 who received a prescription from 24 participating physicians. RESULTS: We screened 1879 prescriptions from 1202 patients, and completed 661 surveys (response rate 55%). Of the prescriptions, 143 (7.6%; 95% confidence interval (CI) 6.4% to 8.8%) contained a prescribing error. Three errors led to preventable ADEs and 62 (43%; 3% of all prescriptions) had potential for patient injury (potential ADEs); 1 was potentially life-threatening (2%) and 15 were serious (24%). Errors in frequency (n=77, 54%) and dose (n=26, 18%) were common. The rates of medication errors and potential ADEs were not significantly different at basic computerized prescribing sites (4.3% vs 11.0%, P=.31; 2.6% vs 4.0%, P=.16) compared to handwritten sites. Advanced checks (including dose and frequency checking) could have prevented 95% of potential ADEs. CONCLUSIONS: Prescribing errors occurred in 7.6% of outpatient prescriptions and many could have harmed patients. Basic computerized prescribing systems may not be adequate to reduce errors. More advanced systems with dose and frequency checking are likely needed to prevent potentially harmful errors
    • 

    corecore