1,606 research outputs found
Chronic psychosocial and financial burden accelerates 5-year telomere shortening: findings from the Coronary Artery Risk Development in Young Adults Study.
Leukocyte telomere length, a marker of immune system function, is sensitive to exposures such as psychosocial stressors and health-maintaining behaviors. Past research has determined that stress experienced in adulthood is associated with shorter telomere length, but is limited to mostly cross-sectional reports. We test whether repeated reports of chronic psychosocial and financial burden is associated with telomere length change over a 5-year period (years 15 and 20) from 969 participants in the Coronary Artery Risk Development in Young Adults (CARDIA) Study, a longitudinal, population-based cohort, ages 18-30 at time of recruitment in 1985. We further examine whether multisystem resiliency, comprised of social connections, health-maintaining behaviors, and psychological resources, mitigates the effects of repeated burden on telomere attrition over 5 years. Our results indicate that adults with high chronic burden do not show decreased telomere length over the 5-year period. However, these effects do vary by level of resiliency, as regression results revealed a significant interaction between chronic burden and multisystem resiliency. For individuals with high repeated chronic burden and low multisystem resiliency (1 SD below the mean), there was a significant 5-year shortening in telomere length, whereas no significant relationships between chronic burden and attrition were evident for those at moderate and higher levels of resiliency. These effects apply similarly across the three components of resiliency. Results imply that interventions should focus on establishing strong social connections, psychological resources, and health-maintaining behaviors when attempting to ameliorate stress-related decline in telomere length among at-risk individuals
Ocean impact on decadal Atlantic climate variability revealed by sea-level observations
Decadal variability is a notable feature of the Atlantic Ocean and the climate of the regions it influences. Prominently, this is manifested in the Atlantic Multidecadal Oscillation (AMO) in sea surface temperatures. Positive (negative) phases of the AMO coincide with warmer (colder) North Atlantic sea surface temperatures. The AMO is linked with decadal climate fluctuations, such as Indian and Sahel rainfall1, European summer precipitation2, Atlantic hurricanes3 and variations in global temperatures4. It is widely believed that ocean circulation drives the phase changes of the AMO by controlling ocean heat content5. However, there are no direct observations of ocean circulation of sufficient length to support this, leading to questions about whether the AMO is controlled from another source6. Here we provide observational evidence of the widely hypothesized link between ocean circulation and the AMO. We take a new approach, using sea level along the east coast of the United States to estimate ocean circulation on decadal timescales. We show that ocean circulation responds to the first mode of Atlantic atmospheric forcing, the North Atlantic Oscillation, through circulation changes between the subtropical and subpolar gyres—the intergyre region7. These circulation changes affect the decadal evolution of North Atlantic heat content and, consequently, the phases of the AMO. The Atlantic overturning circulation is declining8 and the AMO is moving to a negative phase. This may offer a brief respite from the persistent rise of global temperatures4, but in the coupled system we describe, there are compensating effects. In this case, the negative AMO is associated with a continued acceleration of sea-level rise along the northeast coast of the United States9, 10
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Social factors and obesity: an investigation of the role of health behaviours
OBJECTIVES: This study evaluated a behavioural model of the relation between social factors and obesity, in which differences in body mass index (BMI) across sociodemographic groups were hypothesized to be attributable to social group differences in health behaviours affecting energy expenditure (physical activity, diet and alcohol consumption and weight control). METHODS: A total of 8667 adults who participated in the 1995 Australian National Health and Nutrition Surveys provided data on a range of health factors including objectively measured height and weight, health behaviours, and social factors including family status, employment status, housing situation and migration status. RESULTS: Social factors remained significant predictors of BMI after controlling for all health behaviours. Neither social factors alone, nor health behaviours alone, adequately explained the variance in BMI. Gender-specific interactions were found between social factors and individual health behaviours. CONCLUSIONS: These results suggest that social factors moderate the relation between BMI and weight-related behaviours, and that the mechanisms underlying sociodemographic group differences in obesity may vary among men and women. Additional factors are likely to act in conjunction with current health behaviours to explain variation in obesity prevalence across sociodemographic groups.<br /
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Internal and external forcing of multidecadal Atlantic climate variability over the past 1,200 years
The North Atlantic experiences climate variability on multidecadal scales, which is sometimes referred to as Atlantic multidecadal variability. However, the relative contributions of external forcing such as changes in solar irradiance or volcanic activity and internal dynamics to these variations are unclear. Here we provide evidence for persistent summer Atlantic multidecadal variability from AD 800 to 2010 using a network of annually resolved terrestrial proxy records from the circum-North Atlantic region. We find that large volcanic eruptions and solar irradiance minima induce cool phases of Atlantic multidecadal variability and collectively explain about 30% of the variance in the reconstruction on timescales greater than 30 years. We are then able to isolate the internally generated component of Atlantic multidecadal variability, which we define as the Atlantic multidecadal oscillation. We find that the Atlantic multidecadal oscillation is the largest contributor to Atlantic multidecadal variability over the past 1,200 years. We also identify coherence between the Atlantic multidecadal oscillation and Northern Hemisphere temperature variations, leading us to conclude that the apparent link between Atlantic multidecadal variability and regional to hemispheric climate does not arise solely from a common response to external drivers, and may instead reflect dynamic processes
Recommended from our members
A reversal of climatic trends in the North Atlantic since 2005
In the mid-1990s the North Atlantic subpolar gyre warmed rapidly, which had important climate impacts, such as increased hurricane numbers, and changes to rainfall over Africa, Europe and North America. Evidence suggests that the warming was largely due to a strengthening of the ocean circulation, particularly the Atlantic Meridional Overturning Circulation (AMOC). Since the mid-1990s direct and indirect measurements have suggested a decline in the strength of the ocean circulation, which is expected to lead to a reduction in northward heat transport. Here we show that since 2005 a large volume of the upper North Atlantic Ocean has cooled significantly by approximately -0.45C or 1.5x10^22 J, reversing the previous warming trend. By analysing observations and a state-of-the-art climate model, we show that this cooling is consistent with a reduction in the strength of the ocean circulation and heat transport, linked to record low densities in the deep Labrador Sea. The low density in the deep Labrador Sea is primarily due to deep ocean warming since 1995, but a long-term freshening also played a role. The observed upper ocean cooling since 2005 is not consistent with the hypothesis that anthropogenic aerosols directly drive Atlantic temperatures
Specific Cognitive Deficits in ADHD: A Diagnostic Concern in Differential Diagnosis
We present a critical account of existing tools used to diagnose children with Attention Deficit Hyperactivity Disorder and to make a case for the assessment of cognitive impairments as a part of diagnostic system. Surveys have shown that clinicians rely almost entirely upon subjective reports or their own clinical judgment when arriving at diagnostic decisions relating to this prevalent disorder. While information from parents and teachers should always be carefully considered, they are often influenced by a host of emotional and perceptual factors. It increases the possibility for misdiagnosis of a condition like ADHD. Recent experimental literature on ADHD has identified unique underlying cognitive dysfunction, specific to ADHD. Therefore, we propose that there is a need to incorporate information on cognitive mechanisms underlying ADHD and inculcate such information in the diagnostic system, which will provide a more sensitive as well as specific tool in differential diagnosis of ADHD
Recommended from our members
Mechanisms of decadal variability in the Labrador Sea and the wider North Atlantic in a high-resolution climate model
A necessary step before assessing the performance of decadal predictions is the evaluation of the processes that bring memory to the climate system, both in climate models and observations. These mechanisms are particularly relevant in the North Atlantic, where the ocean circulation, related to both the Subpolar Gyre and the Meridional Overturning Circulation (AMOC), is thought to be important for driving significant heat content anomalies. Recently, a rapid decline in observed densities in the deep Labrador Sea has pointed to an ongoing slowdown of the AMOC strength taking place since the mid 90s, a decline also hinted by in-situ observations from the RAPID array.
This study explores the use of Labrador Sea densities as a precursor of the ocean circulation changes, by analysing a 300-year long simulation with the state-of-the-art coupled model HadGEM3-GC2. The major drivers of Labrador Sea density variability are investigated, and are characterised by three major contributions. First, the integrated effect of local surface heat fluxes, mainly driven by year-to-year changes in the North Atlantic Oscillation, which accounts for 62% of the total variance. Additionally, two multidecadal-to-centennial contributions from the Greenland-Scotland Ridge outflows are quantified; the first associated with freshwater exports via the East Greenland Current, and the second with density changes in the Denmark Strait Overflow. Finally, evidence is shown that decadal trends in Labrador Sea densities are followed by important atmospheric impacts. In particular, a negative winter NAO response appears to follow the positive Labrador Sea density trends, and provides a phase reversal mechanism
- …
