567 research outputs found

    11 x 11 Domineering is Solved: The first player wins

    Full text link
    We have developed a program called MUDoS (Maastricht University Domineering Solver) that solves Domineering positions in a very efficient way. This enables the solution of known positions so far (up to the 10 x 10 board) much quicker (measured in number of investigated nodes). More importantly, it enables the solution of the 11 x 11 Domineering board, a board up till now far out of reach of previous Domineering solvers. The solution needed the investigation of 259,689,994,008 nodes, using almost half a year of computation time on a single simple desktop computer. The results show that under optimal play the first player wins the 11 x 11 Domineering game, irrespective if Vertical or Horizontal starts the game. In addition, several other boards hitherto unsolved were solved. Using the convention that Vertical starts, the 8 x 15, 11 x 9, 12 x 8, 12 x 15, 14 x 8, and 17 x 6 boards are all won by Vertical, whereas the 6 x 17, 8 x 12, 9 x 11, and 11 x 10 boards are all won by Horizontal

    Importance Sampling for Objetive Funtion Estimations in Neural Detector Traing Driven by Genetic Algorithms

    Get PDF
    To train Neural Networks (NNs) in a supervised way, estimations of an objective function must be carried out. The value of this function decreases as the training progresses and so, the number of test observations necessary for an accurate estimation has to be increased. Consequently, the training computational cost is unaffordable for very low objective function value estimations, and the use of Importance Sampling (IS) techniques becomes convenient. The study of three different objective functions is considered, which implies the proposal of estimators of the objective function using IS techniques: the Mean-Square error, the Cross Entropy error and the Misclassification error criteria. The values of these functions are estimated by IS techniques, and the results are used to train NNs by the application of Genetic Algorithms. Results for a binary detection in Gaussian noise are provided. These results show the evolution of the parameters during the training and the performances of the proposed detectors in terms of error probability and Receiver Operating Characteristics curves. At the end of the study, the obtained results justify the convenience of using IS in the training

    Complete chloroplast genome sequence of Holoparasite Cistanche Deserticola (Orobanchaceae) reveals gene loss and horizontal gene transfer from Its host Haloxylon Ammodendron (Chenopodiaceae)

    Get PDF
    The central function of chloroplasts is to carry out photosynthesis, and its gene content and structure are highly conserved across land plants. Parasitic plants, which have reduced photosynthetic ability, suffer gene losses from the chloroplast (cp) genome accompanied by the relaxation of selective constraints. Compared with the rapid rise in the number of cp genome sequences of photosynthetic organisms, there are limited data sets from parasitic plants. The authors report the complete sequence of the cp genome of Cistanche deserticola, a holoparasitic desert species belonging to the family Orobanchaceae

    Degeneracy: a link between evolvability, robustness and complexity in biological systems

    Get PDF
    A full accounting of biological robustness remains elusive; both in terms of the mechanisms by which robustness is achieved and the forces that have caused robustness to grow over evolutionary time. Although its importance to topics such as ecosystem services and resilience is well recognized, the broader relationship between robustness and evolution is only starting to be fully appreciated. A renewed interest in this relationship has been prompted by evidence that mutational robustness can play a positive role in the discovery of adaptive innovations (evolvability) and evidence of an intimate relationship between robustness and complexity in biology. This paper offers a new perspective on the mechanics of evolution and the origins of complexity, robustness, and evolvability. Here we explore the hypothesis that degeneracy, a partial overlap in the functioning of multi-functional components, plays a central role in the evolution and robustness of complex forms. In support of this hypothesis, we present evidence that degeneracy is a fundamental source of robustness, it is intimately tied to multi-scaled complexity, and it establishes conditions that are necessary for system evolvability

    Australian Education Joins the OECD : Federalism, Regionalization, and the Role of Education in a Time of Transition

    Get PDF
    This chapter argues that Australian interactions with the Organisation for Economic Co-operation and Development (OECD) in the field of education in the mid- to late-1970s pointed in two separate but not yet incompatible directions—one equity-oriented and the other more in line with the standardization and accountability regime typically identified with the OECD’s current policies—both of which favored a shift of authority toward the national level in educational policy-making. In the process, the chapter highlights the importance of considering movements between different spatial levels of analysis when tracing the ability of international organizations to get their ideas and visions “out of house.” The chapter first outlines the international and domestic contexts for Australia’s early involvement in the OECD, followed by a discussion of the negotiations of state and federal interests on the Australian Commonwealth Department of Education’s advisory committee on OECD matters. This discussion, in turn, frames the last three analytical sections of the chapter, on interactions between the OECD and the Australian education authorities at different levels on initiatives negotiating both the location of authority between these levels and the role of education at a time when the relation between its social and economic potential was up for revision.Non peer reviewe

    Pain in veterans of the Gulf War of 1991: a systematic review

    Get PDF
    BACKGROUND: Veterans of the Persian Gulf War of 1991 have reported a range of adverse health symptoms. This systematic review aims to identify all studies that have compared the prevalence of symptoms of pain in veterans of the Gulf War to that in a non-Gulf military comparison group, and to determine whether Gulf War veterans are at increased risk of reporting pain. METHODS: Studies published between January 1990 and May 2004 were identified by searching a large number of electronic databases. Reference lists and websites were also searched and key researchers were contacted. Studies were included if they reported the prevalence of any symptom or condition that included the word "pain" in Gulf War veterans and in a comparison group of non-Gulf veterans. 2401 abstracts were independently reviewed by two authors. RESULTS: Twenty studies fulfilled the inclusion criteria. Five main sites of pain were identified (muscle, joint, chest/heart, back and abdominal pain) and separate meta-analyses were performed to summarise the results related to each site. A greater proportion of Gulf veterans reported symptoms at each site of pain when compared to a non-Gulf military group. Gulf deployment was most strongly associated with abdominal pain, with Gulf veterans being more than three times more likely to report such pain than a comparison group (OR 3.23; 95%CI 2.31–4.51). Statistical heterogeneity between study estimates was significant, probably due to variation in measured periods of prevalence and symptom measurement methods. CONCLUSION: A higher proportion of veterans of the Persian Gulf War of 1991 reported symptoms of pain than military comparison groups. This is consistent with previously demonstrated increased reporting of more general symptoms (fatigue, multiple chemical sensitivity, post traumatic stress disorder) in these veterans compared with non-Gulf military groups. However, the primary studies were heterogeneous and varied greatly in quality

    2R and remodeling of vertebrate signal transduction engine

    Get PDF
    <p>Abstract</p> <p><b>Background</b></p> <p>Whole genome duplication (WGD) is a special case of gene duplication, observed rarely in animals, whereby all genes duplicate simultaneously through polyploidisation. Two rounds of WGD (2R-WGD) occurred at the base of vertebrates, giving rise to an enormous wave of genetic novelty, but a systematic analysis of functional consequences of this event has not yet been performed.</p> <p><b>Results</b></p> <p>We show that 2R-WGD affected an overwhelming majority (74%) of signalling genes, in particular developmental pathways involving receptor tyrosine kinases, Wnt and transforming growth factor-β ligands, G protein-coupled receptors and the apoptosis pathway. 2R-retained genes, in contrast to tandem duplicates, were enriched in protein interaction domains and multifunctional signalling modules of Ras and mitogen-activated protein kinase cascades. 2R-WGD had a fundamental impact on the cell-cycle machinery, redefined molecular building blocks of the neuronal synapse, and was formative for vertebrate brains. We investigated 2R-associated nodes in the context of the human signalling network, as well as in an inferred ancestral pre-2R (AP2R) network, and found that hubs (particularly involving negative regulation) were preferentially retained, with high connectivity driving retention. Finally, microarrays and proteomics demonstrated a trend for gradual paralog expression divergence independent of the duplication mechanism, but inferred ancestral expression states suggested preferential subfunctionalisation among 2R-ohnologs (2ROs).</p> <p><b>Conclusions</b></p> <p>The 2R event left an indelible imprint on vertebrate signalling and the cell cycle. We show that 2R-WGD preferentially retained genes are associated with higher organismal complexity (for example, locomotion, nervous system, morphogenesis), while genes associated with basic cellular functions (for example, translation, replication, splicing, recombination; with the notable exception of cell cycle) tended to be excluded. 2R-WGD set the stage for the emergence of key vertebrate functional novelties (such as complex brains, circulatory system, heart, bone, cartilage, musculature and adipose tissue). A full explanation of the impact of 2R on evolution, function and the flow of information in vertebrate signalling networks is likely to have practical consequences for regenerative medicine, stem cell therapies and cancer treatment.</p

    Elusive Origins of the Extra Genes in Aspergillus oryzae

    Get PDF
    The genome sequence of Aspergillus oryzae revealed unexpectedly that this species has approximately 20% more genes than its congeneric species A. nidulans and A. fumigatus. Where did these extra genes come from? Here, we evaluate several possible causes of the elevated gene number. Many gene families are expanded in A. oryzae relative to A. nidulans and A. fumigatus, but we find no evidence of ancient whole-genome duplication or other segmental duplications, either in A. oryzae or in the common ancestor of the genus Aspergillus. We show that the presence of divergent pairs of paralogs is a feature peculiar to A. oryzae and is not shared with A. nidulans or A. fumigatus. In phylogenetic trees that include paralog pairs from A. oryzae, we frequently find that one of the genes in a pair from A. oryzae has the expected orthologous relationship with A. nidulans, A. fumigatus and other species in the subphylum Eurotiomycetes, whereas the other A. oryzae gene falls outside this clade but still within the Ascomycota. We identified 456 such gene pairs in A. oryzae. Further phylogenetic analysis did not however indicate a single consistent evolutionary origin for the divergent members of these pairs. Approximately one-third of them showed phylogenies that are suggestive of horizontal gene transfer (HGT) from Sordariomycete species, and these genes are closer together in the A. oryzae genome than expected by chance, but no unique Sordariomycete donor species was identifiable. The postulated HGTs from Sordariomycetes still leave the majority of extra A. oryzae genes unaccounted for. One possible explanation for our observations is that A. oryzae might have been the recipient of many separate HGT events from diverse donors

    Identification of the calcitonin receptor in osteoarthritic chondrocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Preclinical and clinical studies have shown that salmon calcitonin has cartilage protective effects in joint degenerative diseases, such as osteoarthritis (OA). However, the presence of the calcitonin receptor (CTR) in articular cartilage chondrocytes is yet to be identified. In this study, we sought to further investigate the expression of the CTR in naïve human OA articular chondrocytes to gain further confirmation of the existents of the CTR in articular cartilage.</p> <p>Methods</p> <p>Total RNA was purified from primary chondrocytes from articular cartilage biopsies from four OA patients undergoing total knee replacement. High quality cDNA was produced using a dedicated reverse transcription polymerase chain reaction (RT-PCR) protocol. From this a nested PCR assay amplifying the full coding region of the CTR mRNA was completed. Western blotting and immunohistochemistry were used to characterize CTR protein on protein level in chondrocytes.</p> <p>Results</p> <p>The full coding transcript of the CTR isoform 2 was identified in all four individuals. DNA sequencing revealed a number of allelic variants of the gene including two potentially novel polymorphisms: a frame shift mutation, +473del, producing a shorter form of the receptor protein, and a single nucleotide polymorphism in the 3' non coding region of the transcript, +1443 C>T. A 53 kDa protein band, consistent with non-glycosylated CTR isoform 2, was detected in chondrocytes with a similar size to that expressed in osteoclasts. Moreover the CTR was identified in the plasma membrane and the chondrocyte lacuna of both primary chondrocytes and OA cartilage section.</p> <p>Conclusions</p> <p>Human OA articular cartilage chondrocytes do indeed express the CTR, which makes the articular a pharmacological target of salmon calcitonin. In addition, the results support previous findings suggesting that calcitonin has a direct anabolic effect on articular cartilage.</p
    corecore