43 research outputs found

    HHV-6B Induces IFN-Lambda1 Responses in Cord Plasmacytoid Dendritic Cells through TLR9

    Get PDF
    Human herpesvirus type 6B (HHV-6B) is a strong inducer of IFN-alpha and has the capacity to promote Th1 responses and block Th2 responses in vitro. In this study we addressed whether inactivated HHV-6B can also induce IFN lambda responses and to what extent interferons alpha and lambda affect Th1/Th2 polarization. We show that inactivated HHV-6B induced IFN-lambda1 (IL-29) but not IFN-lambda2 (IL-28A) responses in plasmacytoid DC and that this induction was mediated through TLR9. We have previously shown that HHV-6B promotes Th1 responses and blocks Th2 responses in both humans and mice. We now show that neutralization of IFN-alpha but not IFN-lambda1 blocked the HHV-6B-induced enhancement of Th1 responses in MLR, but did not affect the HHV-6-induced dampening of Th2 responses. Similarly, blockage of TLR9 counteracted HHV-6Bs effects on the Th1/Th2 balance. In addition, IFN-alpha but not IFN-lambda1 promoted IFN-gamma production and blocked IL-5 and IL-13 production in purified CD4+ T-cells. The lack of effect of IFN-lambda1 correlated with the absence of the IFN-lambda receptor IL-28Ralfa chain on the cell surface of both resting and activated CD4+ T-cells. We conclude that inactivated HHV-6B is a strong inducer of IFN-lambda1 in plasmacytoid DC and that this induction is TLR9-dependent. However, human CD4+ T-cells do not express the IFN-lambda receptor and are refractory to IFN-lambda1 treatment. The HHV-6B-induced alterations in the Th1/Th2 balance are instead mediated mainly through TLR9 and IFN-alpha

    Rapid Discrimination of Salmonella enterica Serovar Typhi from Other Serovars by MALDI-TOF Mass Spectrometry

    Get PDF
    Systemic infections caused by Salmonella enterica are an ongoing public health problem especially in Sub-Saharan Africa. Essentially typhoid fever is associated with high mortality particularly because of the increasing prevalence of multidrug-resistant strains. Thus, a rapid blood-culture based bacterial species diagnosis including an immediate sub-differentiation of the various serovars is mandatory. At present, MALDI-TOF based intact cell mass spectrometry (ICMS) advances to a widely used routine identification tool for bacteria and fungi. In this study, we investigated the appropriateness of ICMS to identify pathogenic bacteria derived from Sub-Saharan Africa and tested the potential of this technology to discriminate S. enterica subsp. enterica serovar Typhi (S. Typhi) from other serovars. Among blood culture isolates obtained from a study population suffering from febrile illness in Ghana, no major misidentifications were observed for the species identification process, but serovars of Salmonella enterica could not be distinguished using the commercially available Biotyper database. However, a detailed analysis of the mass spectra revealed several serovar-specific biomarker ions, allowing the discrimination of S. Typhi from others. In conclusion, ICMS is able to identify isolates from a sub-Saharan context and may facilitate the rapid discrimination of the clinically and epidemiologically important serovar S. Typhi and other non-S. Typhi serovars in future implementations

    Kaposi's Sarcoma-Associated Herpesvirus-Encoded LANA Down-Regulates IL-22R1 Expression through a Cis-Acting Element within the Promoter Region

    Get PDF
    Kaposi's sarcoma-associated herpesvirus (KSHV) is considered to be a necessary, but not sufficient, causal agent of Kaposi's sarcoma (KS). All forms of KS are characterized by the proliferation of spindle-shaped cells, and most (>90%) spindle cells from KS lesions are latently infected with KSHV. During KSHV latency, only a few viral genes are expressed. Among those latent genes, the ORF 73 gene encodes the latency-associated nuclear antigen (LANA), which is critical for the establishment and maintenance of the latent KSHV infection. Much evidence suggests that many cytokines can increase the frequency and aggressiveness of KS. In this study, a microarray analysis of KS and normal tissues revealed that multiple cytokines and cytokine receptors are regulated by KSHV latent infection. Of special interest, IL-22R1 transcript level was found to be down-regulated in the KS tissue. To study the possible regulation of IL-22R1 by LANA, the IL-22R1 promoter was constructed and found to contain a LANA-binding site (LBS). LANA was demonstrated to down-regulate IL-22R1 expression via direct binding to the LBS located within the IL-22R1 promoter region. Furthermore, KSHV latently infected cells showed an impaired response to IL-22 stimulation. These results suggest that LANA can regulate host factor expression by directly binding to a cis-acting element within the factor's promoter to benefit latent viral infection and suppression of the antiviral immune response

    Polycomb Repressive Complex 2 Controls the Embryo-to-Seedling Phase Transition

    Get PDF
    Polycomb repressive complex 2 (PRC2) is a key regulator of epigenetic states catalyzing histone H3 lysine 27 trimethylation (H3K27me3), a repressive chromatin mark. PRC2 composition is conserved from humans to plants, but the function of PRC2 during the early stage of plant life is unclear beyond the fact that it is required for the development of endosperm, a nutritive tissue that supports embryo growth. Circumventing the requirement of PRC2 in endosperm allowed us to generate viable homozygous null mutants for FERTILIZATION INDEPENDENT ENDOSPERM (FIE), which is the single Arabidopsis homolog of Extra Sex Combs, an indispensable component of Drosophila and mammalian PRC2. Here we show that H3K27me3 deposition is abolished genome-wide in fie mutants demonstrating the essential function of PRC2 in placing this mark in plants as in animals. In contrast to animals, we find that PRC2 function is not required for initial body plan formation in Arabidopsis. Rather, our results show that fie mutant seeds exhibit enhanced dormancy and germination defects, indicating a deficiency in terminating the embryonic phase. After germination, fie mutant seedlings switch to generative development that is not sustained, giving rise to neoplastic, callus-like structures. Further genome-wide studies showed that only a fraction of PRC2 targets are transcriptionally activated in fie seedlings and that this activation is accompanied in only a few cases with deposition of H3K4me3, a mark associated with gene activity and considered to act antagonistically to H3K27me3. Up-regulated PRC2 target genes were found to act at different hierarchical levels from transcriptional master regulators to a wide range of downstream targets. Collectively, our findings demonstrate that PRC2-mediated regulation represents a robust system controlling developmental phase transitions, not only from vegetative phase to flowering but also especially from embryonic phase to the seedling stage

    The ASH1 HOMOLOG 2 (ASHH2) Histone H3 Methyltransferase Is Required for Ovule and Anther Development in Arabidopsis

    Get PDF
    BACKGROUND:SET-domain proteins are histone lysine (K) methyltransferases (HMTase) implicated in defining transcriptionally permissive or repressive chromatin. The Arabidopsis ASH1 HOMOLOG 2 (ASHH2) protein (also called SDG8, EFS and CCR1) has been suggested to methylate H3K4 and/or H3K36 and is similar to Drosophila ASH1, a positive maintainer of gene expression, and yeast Set2, a H3K36 HMTase. Mutation of the ASHH2 gene has pleiotropic developmental effects. Here we focus on the role of ASHH2 in plant reproduction. METHODOLOGY/PRINCIPAL FINDINGS:A slightly reduced transmission of the ashh2 allele in reciprocal crosses implied involvement in gametogenesis or gamete function. However, the main requirement of ASHH2 is sporophytic. On the female side, close to 80% of mature ovules lack embryo sac. On the male side, anthers frequently develop without pollen sacs or with specific defects in the tapetum layer, resulting in reduction in the number of functional pollen per anther by up to approximately 90%. In consistence with the phenotypic findings, an ASHH2 promoter-reporter gene was expressed at the site of megaspore mother cell formation as well as tapetum layers and pollen. ashh2 mutations also result in homeotic changes in floral organ identity. Transcriptional profiling identified more than 300 up-regulated and 600 down-regulated genes in ashh2 mutant inflorescences, whereof the latter included genes involved in determination of floral organ identity, embryo sac and anther/pollen development. This was confirmed by real-time PCR. In the chromatin of such genes (AP1, AtDMC1 and MYB99) we observed a reduction of H3K36 trimethylation (me3), but not H3K4me3 or H3K36me2. CONCLUSIONS/SIGNIFICANCE:The severe distortion of reproductive organ development in ashh2 mutants, argues that ASHH2 is required for the correct expression of genes essential to reproductive development. The reduction in the ashh2 mutant of H3K36me3 on down-regulated genes relevant to the observed defects, implicates ASHH2 in regulation of gene expression via H3K36 trimethylation in chromatin of Arabidopsis inflorescences

    Gene therapy for monogenic liver diseases: clinical successes, current challenges and future prospects

    Get PDF
    Over the last decade, pioneering liver-directed gene therapy trials for haemophilia B have achieved sustained clinical improvement after a single systemic injection of adeno-associated virus (AAV) derived vectors encoding the human factor IX cDNA. These trials demonstrate the potential of AAV technology to provide long-lasting clinical benefit in the treatment of monogenic liver disorders. Indeed, with more than ten ongoing or planned clinical trials for haemophilia A and B and dozens of trials planned for other inherited genetic/metabolic liver diseases, clinical translation is expanding rapidly. Gene therapy is likely to become an option for routine care of a subset of severe inherited genetic/metabolic liver diseases in the relatively near term. In this review, we aim to summarise the milestones in the development of gene therapy, present the different vector tools and their clinical applications for liver-directed gene therapy. AAV-derived vectors are emerging as the leading candidates for clinical translation of gene delivery to the liver. Therefore, we focus on clinical applications of AAV vectors in providing the most recent update on clinical outcomes of completed and ongoing gene therapy trials and comment on the current challenges that the field is facing for large-scale clinical translation. There is clearly an urgent need for more efficient therapies in many severe monogenic liver disorders, which will require careful risk-benefit analysis for each indication, especially in paediatrics

    SAP controls T cell responses to virus and terminal differentiation of TH2 cells

    No full text
    SH2D1A, which encodes signaling lymphocyte activation molecule (SLAM)-associated protein (SAP), is altered in patients with X-linked lymphoproliferative disease (XLP), a primary immunodeficiency. SAP-deficient mice infected with lymphocytic choriomeningitis virus had greatly increased numbers of CD8+ and CD4+ interferon-gamma-producing spleen and liver cells compared to wild-type mice. The immune responses of SAP-deficient mice to infection with Leishmania major together with in vitro studies showed that activated SAP-deficient T cells had an impaired ability to differentiate into T helper 2 cells. The aberrant immune responses in SAP-deficient mice show that SAP controls several distinct key T cell signal transduction pathways, which explains in part the complexity of the XLP phenotypes.
    corecore