54 research outputs found

    Cameras and settings for aerial surveys in the geosciences : optimising image data

    Get PDF
    Aerial image capture has become very common within the geosciences due to the increasing affordability of low-payload (<20 kg) unmanned aerial vehicles (UAVs) for consumer markets. Their application to surveying has subsequently led to many studies being undertaken using UAV imagery and derived products as primary data sources. However, image quality and the principles of image capture are seldom given rigorous discussion. In this contribution we firstly revisit the underpinning concepts behind image capture, from which the requirements for acquiring sharp, well-exposed and suitable image data are derived. Secondly, the platform, camera, lens and imaging settings relevant to image quality planning are discussed, with worked examples to guide users through the process of considering the factors required for capturing high-quality imagery for geoscience investigations. Given a target feature size and ground sample distance based on mission objectives, the flight height and velocity should be calculated to ensure motion blur is kept to a minimum. We recommend using a camera with as large a sensor as is permissible for the aerial platform being used (to maximise sensor sensitivity), effective focal lengths of 24–35 mm (to minimise errors due to lens distortion) and optimising ISO (to ensure the shutter speed is fast enough to minimise motion blur). Finally, we give recommendations for the reporting of results by researchers in order to help improve the confidence in, and reusability of, surveys through providing open access imagery where possible, presenting example images and excerpts and detailing appropriate metadata to rigorously describe the image capture process

    Chandler wobble: Stochastic and deterministic dynamics

    No full text
    Presented at the 13th International Conference, Dynamical Systems - Theory and Applications (DSTA '2015), Lodz, Poland, 7-10 Dec. 2015We propose a model of the Earth’s torqueless precession, the “Chandler wobble,” as a self-oscillation driven by positive feedback between the wobble and the centrifugal deformation of the portion of the Earth’s mass contained in circulating fluids. The wobble may thus run like a heat engine, extracting energy from heat-powered geophysical circulations whose natural periods would otherwise by unrelated to the wobble’s observed period of about fourteen months. This can explain, more plausibly than previous models based on stochastic perturbations or forced resonance, how the wobble is maintained against viscous dissipation. The self-oscillation is a deterministic process, but stochastic variations in the magnitude and distribution of the circulations may turn off the positive feedback (a Hopf bifurcation), accounting for the occasional extinctions, followed by random phase jumps, seen in the data. This model may have implications for broader questions about the relation between stochastic and deterministic dynamics in complex systems, and the statistical analysis thereof.UCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Físic

    Lagrangian measurements of the fast evaporation of falling diethyl ether droplets using in-line digital holography and a high-speed camera

    No full text
    International audienceThe evaporation of falling diethyl ether droplets is measured by following droplets along their trajectories. Measurements are performed at ambient temperature and pressure by using in-line digital holography. The holograms of droplets are recorded with a single high-speed camera and reconstructed with an ''inverse problems'' approach algorithm previously tested (Chareyron et al. New J Phys 14:43039, 2012). Once evaporation starts, the interfaces of the droplets are surrounded by air/vapor mixtures with refractive index gradients that modify the holograms. The central part of the droplets holograms is unusually bright compared to what is expected and observed for non-evaporating droplets. The reconstruction process is accordingly adapted to measure the droplets diameter along their trajectory. The diethyl ether being volatile, the droplets are found to evaporate in a very short time: of the order of 70 ms for a 50-60 lm diameter at an ambient temperature of 25 C. After this time, the diethyl ether has fully evaporated and droplets diameter reaches a plateau. The remaining droplets are then only composed of water, originating from the cooling and condensation of the humid air at the droplet surface. This assertion is supported by two pieces of evidence: (i) by estimating the evolution of droplets refractive index from light scattering measurements at rainbow angle and (ii) by comparing the evaporation rate and droplets velocities obtained by digital holography with those calculated with a simple model of evaporation/condensation. The overall results show that the in-line digital holography with ''inverse problems''approach is an accurate technique for studying fast evaporation from a Lagrangian point of view
    • …
    corecore