35 research outputs found

    Implication of IL-2/IL-21 region in systemic sclerosis genetic susceptibility

    Get PDF
    Objective: The interleukin 2 (IL-2) and interleukin 21 (IL-21) locus at chromosome 4q27 has been associated with several autoimmune diseases, and both genes are related to immune system functions. The aim of this study was to evaluate the role of the IL-2/IL-21 locus in systemic sclerosis (SSc). Patients and methods: The case control study included 4493 SSc Caucasian patients and 5856 healthy controls from eight Caucasian populations (Spain, Germany, The Netherlands, USA, Italy, Sweden, UK and Norway). Four single nucleotide polymorphisms (rs2069762, rs6822844, rs6835457 and rs907715) were genotyped using TaqMan allelic discrimination assays. Results: We observed evidence of association of the rs6822844 and rs907715 variants with global SSc (pc=6.6E-4 and pc=7.2E-3, respectively). Similar statistically significant associations were observed for the limited cutaneous form of the disease. The conditional regression analysis suggested that the most likely genetic variation responsible for the association was the rs6822844 polymorphism. Consistently, the rs2069762A-rs6822844T-rs6835457G-rs907715T allelic combination showed evidence of association with SSc and limited cutaneous SSc subtype (pc=1.7E-03 and pc=8E-4, respectively). Conclusions: These results suggested that the IL-2/IL-21 locus influences the genetic susceptibility to SSc. Moreover, this study provided further support for the IL-2/IL-21 locus as a common genetic factor in autoimmune diseases

    Protocol for the validation of microbiological control of cellular products according to German regulators recommendations - Boon and Bane for the manufacturer

    No full text
    In order to generate standardized conditions for the microbiological control of HPCs, the PEI recommended defined steps for validation that will lead to extensive validation as shown in this study, where a possible validation principle for the microbiological control of allogeneic SCPs is presented. Although it could be demonstrated that automated culture improves microbial safety of cellular products, the requirement for extensive validation studies needs to be considered

    Noncanonical function of AGO2 augments T-cell receptor signaling in T-cell prolymphocytic leukemia

    No full text
    T-cell prolymphocytic leukemia (T-PLL) is a chemotherapy-refractory T-cell malignancy with limited therapeutic options and a poor prognosis. Current disease concepts implicate TCL1A oncogene-mediated enhanced T-cell receptor (TCR) signaling and aberrant DNA repair as central perturbed pathways. We discovered that recurrent gains on chromosome 8q more frequently involve the AGO2 gene than the adjacent MYC locus as the affected minimally amplified genomic region. AGO2 has been understood as a pro-tumorigenic key regulator of microRNA (miR) processing. In primary tumor material and cell line models, AGO2 overrepresentation associated (i) with higher disease burden, (ii) with enhanced in vitro viability and growth of leukemic T-cells, and (iii) with miR-omes and transcriptomes that highlight altered survival signaling, abrogated cell cycle control, and defective DNA damage responses. Moreover, AGO2 elicited immediate, rather than non-RNA mediated, effects in leukemic T-cells. Systems of genetically modulated AGO2 revealed that it enhances TCR signaling, particularly at the level of ZAP70, PLCγ1, and LAT kinase phospho-activation. In global mass-spectrometric analyses, AGO2 interacted with a unique set of partners in a TCR-stimulated context, including the TCR kinases LCK and ZAP70, forming membranous protein complexes. Models of their three-dimensional structure also suggested that AGO2 undergoes post-transcriptional modi-fications by LCK. This novel TCR-associated non-canonical function of AGO2 represents, in addition to TCL1A-mediated TCR signal augmentation, another enhancer mechanism of this important deregulated growth pathway in T-PLL. These findings further emphasize TCR signaling intermediates as candidates for therapeutic targeting
    corecore