139 research outputs found

    Temperature and Metallicity in the Intra-cluster Medium of ABELL 262 observed with Suzaku

    Full text link
    We studied the temperature and abundance distributions of intra-cluster medium (ICM) in the Abell 262 cluster of galaxies observed with Suzaku. Abell 262 is a bright, nearby poor cluster with ICM temperature of ~2 keV, thus providing useful information about the connection of ICM properties between groups and clusters of galaxies. The observed spectrum of the central region was well-represented by two temperature models, and the spectra for the outer regions were described by single temperature model. With the XIS instrument, we directly measured not only Si, S, and Fe lines but also O and Mg lines and obtained those abundances to an outer region of ~0.43 r_180 for the first time. We found steep gradients for Mg, Si, S, and Fe abundances, while O showed almost flat abundance distribution. Abundance ratios of alpha-elements to Fe were found to be similar to those of the other clusters and groups. We calculated the number ratio of type II to type Ia supernovae for the ICM enrichment to be 3.0 +- 0.6 within 0.1 r_180, and the value was consistent with those for other clusters and groups. We also calculated metal mass-to-light ratios (MLRs) for Fe, O and Mg (IMLR, OMLR, MMLR) with B-band and K-band luminosities of the member galaxies of Abell 262. The derived MLRs were comparable to those for other clusters with kT = 3-4 keV.Comment: 12 pages, 8 figures, accepted for publication in PAS

    Self-similarity of temperature profiles in distant galaxy clusters: the quest for a Universal law

    Full text link
    We present the XMM-Newton temperature profiles of 12 bright clusters of galaxies at 0.4<z<0.9, with 5<kT<11 keV. The normalized temperature profiles (normalized by the mean temperature T500) are found to be generally self-similar. The sample was subdivided in 5 cool-core (CC) and 7 non cool-core (NCC) clusters, by introducing a pseudo-entropy ratio sigma=(T_IN/T_OUT)X(EM_IN/EM_OUT)^-1/3 and defining the objects with sigma<0.6 as CC clusters and those with sigma>=0.6 as NCC clusters. The profiles of CC and NCC clusters differ mainly in the central regions, with the latters exhibiting a marginally flatter central profile. A significant dependence of the temperature profiles on the pseudo-entropy ratio sigma is detected by fitting a function of both r and sigma, showing an indication that the outer part of the profiles becomes steeper for higher values of sigma (i.e. transitioning towards the NCC clusters). No significant evidence of redshift evolution could be found within the redshift range sampled by our clusters (0.4<z<0.9). A comparison of our high-z sample with intermediate clusters at 0.1<z<0.3, showed how both the CC and NCC clusters temperature profiles have experienced some sort of evolution. This can be due by the fact that higher z clusters are at less advanced stage of their formation and did not have enough time to create a relaxed structure, characterized by a central temperature dip in CC clusters and by flatter profiles in NCC clusters. This is the first time that a systematic study of the temperature profiles of galaxy clusters at z>0.4 has been attempted, as we were able to define the closest possible relation to a Universal law for the temperature profiles of galaxy clusters at 0.1<z<0.9, showing a dependence on both the state of relaxation of the clusters and the redshift.Comment: 14 pages, 8 figures, A&A in press, minor changes (language editing

    The Entire Virial Radius of the Fossil Cluster RXJ1159+5531: I. Gas Properties

    Get PDF
    Previous analysis of the fossil-group/cluster RXJ1159+5531 with X-ray observations from a central Chandra pointing and an offset-North Suzaku pointing indicate a radial intracluster medium (ICM) entropy profile at the virial radius (RvirR_{\rm vir}) consistent with predictions from gravity-only cosmological simulations, in contrast to other cool-core clusters. To examine the generality of these results, we present three new Suzaku observations that, in conjunction with the North pointing, provide complete azimuthal coverage out to RvirR_{\rm vir}. With two new Chandra ACIS-I observations overlapping the North Suzaku pointing, we have resolved ≳\gtrsim50\% of the cosmic X-ray background there. We present radial profiles of the ICM density, temperature, entropy, and pressure obtained for each of the four directions. We measure only modest azimuthal scatter in the ICM properties at R200R_{\rm 200} between the Suzaku pointings: 7.6\% in temperature and 8.6\% in density, while the systematic errors can be significant. The temperature scatter, in particular, is lower than that studied at R200R_{\rm 200} for a small number of other clusters observed with Suzaku. These azimuthal measurements verify that RXJ1159+5531 is a regular, highly relaxed system. The well-behaved entropy profiles we have measured for RXJ1159+5531 disfavor the weakening of the accretion shock as an explanation of the entropy flattening found in other cool-core clusters but is consistent with other explanations such as gas clumping, electron-ion non-equilibrium, non-thermal pressure support, and cosmic ray acceleration. Finally, we mention that the large-scale galaxy density distribution of RXJ1159+5531 seems to have little impact on its gas properties near RvirR_{\rm vir}.Comment: Accepted for publication in Ap

    XMM-Newton observation of the cluster ZW 1305.4+2941 in the field SA 57

    Full text link
    We report the details of an XMM observation of the cluster of galaxies ZW 1305.4+2941 at the intermediate redshift of z=0.241, increasing the small number of interesting X-ray constraints on properties of ~3 keV systems above z=0.1. Based on the 45 ks XMM observation, we find that within a radius of 228 kpc the cluster has an unabsorbed X-ray flux of 2.07 +/- 0.06 x 10^{-13} erg/cm^2/s, a temperature of kT = 3.17 +/-0.19 keV, in good agreement with the previous ROSAT determination, and an abundance of 0.93 (+0.24,-0.29} solar. Within r_500 = 723 +/- 6 kpc the rest-frame bolometric X-ray luminosity is L_X (r_500)= 1.25 +/- 0.16 x 10^{44} erg/s. The cluster obeys the scaling relations for L_X, T and the velocity dispersion derived at intermediate redshift for kT < 4 keV, for which we provide new fits for all literature objects. The mass derived from an isothermal NFW model fit is, M_vir = 2.77 +/- 0.21 x 10^{14} solar masses, with a concentration parameter, c = 7.9 +/- 0.5.Comment: 9 pages, 7 colour figures, accepted for publication in ApJ. Corrected typo on the fraction of blue galaxie

    The XMM view of the outskirts of galaxy groups

    Get PDF
    I will present the results of XMM observations on the outskirts of the bright galaxy group NGC 5044 addressing mass, entropy and metal abundances. I will discuss the results that XMM can achieve by exploring the outskirts of groups providing a complementary and fundamental piece of informations to the scenario emerging for the more massive clusters of galaxies

    AGN Feedback in Galaxy Groups: the two interesting cases of AWM 4 and NGC 5044

    Full text link
    We present AGN feedback in the interesting cases of two groups: AWM 4 and NGC 5044. AWM 4 is characterized by a combination of properties which seems to defy the paradigm for AGN heating in cluster cores: a flat inner temperature profile indicative of a past, major heating episode which completely erased the cool core, as testified by the high central cooling time (> 3 Gyrs) and by the high central entropy level (~ 50 keV cm^2), and yet an active central radio galaxy with extended radio lobes out to 100 kpc, revealing recent feeding of the central massive black hole. A recent Chandra observation has revealed the presence of a compact cool corona associated with the BCG, solving the puzzle of the apparent lack of low entropy gas surrounding a bright radio source, but opening the question of its origin. NGC 5044 shows in the inner 10 kpc a pair of cavities together with a set of bright filaments. The cavities are consistent with a recent AGN outburst as also indicated by the extent of dust and H_alpha emission even though the absence of extended 1.4 GHz emission remains to be explained. The soft X-ray filaments coincident with H_alpha and dust emission are cooler than those which do not correlate with optical and infrared emission, suggesting that dust-aided cooling can contribute to the overall cooling. For the first time sloshing cold fronts at the scale of a galaxy group have been observed in this object.Comment: 4 pages, 1 figure, to appear in proceedings of the conference "The Monster's Fiery Breath: Feedback in Galaxies, Groups, and Clusters", June 2009, Madison Wisconsi

    Ni abundance in the core of the Perseus Cluster: an answer to the significance of resonant scattering

    Get PDF
    Using an XMM-Newton observation of the Perseus cluster we show that the excess in the flux of the 7-8 keV line complex previously detected by ASCA and BeppoSAX is due to an overabundance of Nickel rather than to an anomalously high Fe Heβ\beta/Fe Heα\alpha ratio. This observational fact leads to the main result that resonant scattering, which was assumed to be responsible for the supposed anomalous Fe Heβ\beta/Fe Heα\alpha ratio, is no longer required. The absence of resonant scattering points towards the presence of significant gas motions (either turbulent or laminar) in the core of the Perseus cluster.Comment: 29 pages, 10 bw figures, accepted for publication in the Astrophysical Journa

    A systematic analysis of the XMM-Newton background: III. Impact of the magnetospheric environment

    Get PDF
    A detailed characterization of the particle induced background is fundamental for many of the scientific objectives of the Athena X-ray telescope, thus an adequate knowledge of the background that will be encountered by Athena is desirable. Current X-ray telescopes have shown that the intensity of the particle induced background can be highly variable. Different regions of the magnetosphere can have very different environmental conditions, which can, in principle, differently affect the particle induced background detected by the instruments. We present results concerning the influence of the magnetospheric environment on the background detected by EPIC instrument onboard XMM-Newton through the estimate of the variation of the in-Field-of-View background excess along the XMM-Newton orbit. An important contribution to the XMM background, which may affect the Athena background as well, comes from soft proton flares. Along with the flaring component a low-intensity component is also present. We find that both show modest variations in the different magnetozones and that the soft proton component shows a strong trend with the distance from Earth.Comment: To appear in Experimental Astronomy. Presented at AHEAD Background Workshop, 28-30 November 2016. Rome, Ital

    An HST/COS Observation of Broad Lyα\alpha Emission and Associated Absorption Lines of the BL Lacertae Object H 2356-309

    Full text link
    Weak spectral features in BL Lacertae objects (BL Lac) often provide a unique opportunity to probe the inner region of this rare type of active galactic nucleus. We present a Hubble Space Telescope/Cosmic Origins Spectrograph observation of the BL Lac H 2356-309. A weak Lyα\alpha emission line was detected. This is the fourth detection of a weak Lyα\alpha emission feature in the ultraviolet (UV) band in the so-called "high energy peaked BL Lacs", after Stocke et al. Assuming the line-emitting gas is located in the broad line region (BLR) and the ionizing source is the off-axis jet emission, we constrain the Lorentz factor (Γ\Gamma) of the relativistic jet to be ≥8.1\geq 8.1 with a maximum viewing angle of 3.6∘^\circ. The derived Γ\Gamma is somewhat larger than previous measurements of Γ≈3−5\Gamma \approx 3 - 5, implying a covering factor of ∼\sim 3% of the line-emitting gas. Alternatively, the BLR clouds could be optically thin, in which case we constrain the BLR warm gas to be ∼10−5 M⊙\sim 10^{-5}\rm\ M_{\odot}. We also detected two HI and one OVI absorption lines that are within ∣Δv∣<150 km s−1|\Delta v| < 150\rm\ km\ s^{-1} of the BL Lac object. The OVI and one of the HI absorbers likely coexist due to their nearly identical velocities. We discuss several ionization models and find a photoionization model where the ionizing photon source is the BL Lac object can fit the observed ion column densities with reasonable physical parameters. This absorber can either be located in the interstellar medium of the host galaxy, or in the BLR.Comment: 7 pages, 2 figures, accepted for publication in Ap
    • …
    corecore