357 research outputs found

    Bayesian View Of Solar Neutrino Oscillations

    Get PDF
    We present the results of a Bayesian analysis of solar neutrino data in terms of nu_e->nu_{mu,tau} and nu_e->nu_s oscillations, where nu_s is a sterile neutrino. We perform a Rates Analysis of the rates of solar neutrino experiments, including the first SNO CC result, and spectral data of the CHOOZ experiment, and a Global Analysis that takes into account also the Super-Kamiokande day and night electron energy spectra. We show that the Bayesian analysis does not suffer any problem from the inclusion of the numerous bins of the CHOOZ and Super-Kamiokande energy spectra and allows to reach the same conclusions on the favored type of neutrino transitions and on the determination of the most favored values of the oscillation parameters in both the Rates and Global Analysis. Our Bayesian analysis shows that nu_e->nu_s transitions are strongly disfavored with respect to nu_e->nu_{mu,tau} transitions. In the case of nu_e->nu_{mu,tau} oscillations, the LMA region is favored by the data (86% probability), the LOW region has some small chance (13% probability), the VO region is almost excluded (1% probability) and the SMA region is practically excluded (0.01% probability). We calculate also the marginal posterior probability distributions for tan^2 theta and Delta m^2 and we show that the data imply large mixing almost with certainty and large values of Delta m^2 are favored. We present also the results of a standard least-squares analysis and we show that the standard goodness of fit test is not able to rejects pure nu_e->nu_s transitions. The likelihood ratio test allows to reject pure nu_e->nu_s transitions in favor of nu_e->nu_{mu,tau} transitions only in the Global Analysis.Comment: 31 pages, 8 figures. Final version to be published in JHE

    Statistical Analysis of Solar Neutrino Data

    Get PDF
    We calculate with Monte Carlo the goodness of fit and the confidence level of the standard allowed regions for the neutrino oscillation parameters obtained from the fit of the total rates measured in solar neutrino experiments. We show that they are significantly overestimated in the standard method. We also calculate exact allowed regions with correct frequentist coverage. We show that the exact VO, LMA and LOW regions are much larger than the standard ones and merge together giving an allowed band at large mixing angles for all Delta m^2 > 10^{-10} eV^2.Comment: 4 pages. Talk presented by C. Giunti at NOW 2000, Conca Specchiulla (Otranto, Italy), 9-16 Sep. 200

    Assessing the role of nuclear effects in the interpretation of the MiniBooNE low-energy anomaly

    Full text link
    We study the impact of the effect of multinucleon interactions in the reconstruction of the neutrino energy on the fit of the MiniBooNE data in terms of neutrino oscillations. We obtain some improvement of the fit of the MiniBooNE low-energy excess in the framework of two-neutrino oscillations and a shift of the allowed region in the sin⁥22ϑ\sin^2 2\vartheta--Δm2\Delta{m}^2 plane towards smaller values of sin⁥22ϑ\sin^2 2\vartheta and larger values of Δm2\Delta{m}^2. However this effect is not enough to solve the problem of the appearance-disappearance tension in the global fit of short-baseline neutrino oscillation data.Comment: 14 pages; to be published in PR

    Top-antitop pair hadroproduction in association with a heavy boson at the NLO QCD accuracy + Parton Shower

    Full text link
    The PowHel framework allows to make predictions of total and differential cross-sections of multiparticle hadroproduction processes at both NLO QCD accuracy and NLO QCD matched to Parton Shower, on the basis of the interface between the POWHEG-BOX and HELAC-NLO codes. It has already been applied to study several processes involving a top-antitop pair in association with a third particle or hadronic jet. Our most recent predictions concern top-antitop-V hadroproduction (with V = W or Z), at both parton and hadron level, by considering different decay channels (hadronic and leptonic) of the heavy particles. In particular, we show the results of our phenomenological analyses under the same system of cuts also recently adopted by the CMS collaboration at LHC.Comment: 4 pages, 2 figures, Proceedings of TOP 2012 - 5th International Workshop on Top Quark Physics, September 16 - 21 2012, Winchester, U

    Helac-nlo

    Full text link
    Based on the OPP technique and the HELAC framework, HELAC-1LOOP is a program that is capable of numerically evaluating QCD virtual corrections to scattering amplitudes. A detailed presentation of the algorithm is given, along with instructions to run the code and benchmark results. The program is part of the HELAC-NLO framework that allows for a complete evaluation of QCD NLO corrections.Comment: minor text revisions, version to appear in Comput.Phys.Commu

    Statistical treatment of detection cross-section uncertainties in the analysis of solar neutrino data

    Get PDF
    We propose a modification to the standard statistical treatment of the detection cross-section uncertainties in the analysis of solar neutrino data. We argue that the uncertainties of the energy-averaged cross sections of the different neutrino fluxes in the same experiment should be treated as correlated. We show that the resulting allowed regions for the neutrino oscillation parameters are significantly larger than the ones obtained with uncorrelated uncertainties.Comment: 12 pages. Corrected Figures 4 and 5 (vacuum oscillations

    A frequentist analysis of solar neutrino data

    Get PDF
    We calculate with Monte Carlo the goodness of fit and the confidence level of the standard allowed regions for the neutrino oscillation parameters obtained from the fit of solar neutrino data. We show that the values of the goodness of fit and of the confidence level of the allowed regions are significantly smaller than the standard ones. Using Neyman's method, we also calculate exact allowed regions with correct frequentist coverage. We show that the standard allowed region around the global minimum of the least-squares function is a reasonable approximation of the exact one, whereas the size of the other regions is dramatically underestimated in the standard method.Comment: 19 page

    Hadronic top-quark pair production in association with two jets at Next-to-Leading Order QCD

    Full text link
    We report on the calculation of the next-to-leading order QCD corrections to the production of ttbar pairs in association with two hard jets at the Fermilab TeVatron and CERN Large Hadron Collider. Results for the integrated and differential cross sections are given. The corrections with respect to leading order are negative and moderate. A study of the scale dependence of our NLO predictions indicates that the residual theoretical uncertainty, due to higher order corrections, is 21% for the TeVatron and 15% for the LHC. In case of the TeVatron, the forward-backward asymmetry of the top quark is calculated for the first time at next-to-leading order. With the inclusive selection of cuts, this asymmetry amounts to A_FB = -10.3% at leading order and A_FB = -4.6% at next-to-leading order. All results presented in this paper have been obtained with the help of the HELAC-NLO package.Comment: 18 pages, 18 figures and 13 table
    • 

    corecore