70,689 research outputs found

    Ionization of ions

    Get PDF
    Charged particle binary encounter model modified for evaluating ionization cross section of positive ions by electron impac

    A Thermodynamically-Consistent Non-Ideal Stochastic Hard-Sphere Fluid

    Full text link
    A grid-free variant of the Direct Simulation Monte Carlo (DSMC) method is proposed, named the Isotropic DSMC (I-DSMC) method, that is suitable for simulating dense fluid flows at molecular scales. The I-DSMC algorithm eliminates all grid artifacts from the traditional DSMC algorithm; it is Galilean invariant and microscopically isotropic. The stochastic collision rules in I-DSMC are modified to yield a non-ideal structure factor that gives consistent compressibility, as first proposed in [Phys. Rev. Lett. 101:075902 (2008)]. The resulting Stochastic Hard Sphere Dynamics (SHSD) fluid is empirically shown to be thermodynamically identical to a deterministic Hamiltonian system of penetrable spheres interacting with a linear core pair potential, well-described by the hypernetted chain (HNC) approximation. We apply a stochastic Enskog kinetic theory for the SHSD fluid to obtain estimates for the transport coefficients that are in excellent agreement with particle simulations over a wide range of densities and collision rates. The fluctuating hydrodynamic behavior of the SHSD fluid is verified by comparing its dynamic structure factor against theory based on the Landau-Lifshitz Navier-Stokes equations. We also study the Brownian motion of a nano-particle suspended in an SHSD fluid and find a long-time power-law tail in its velocity autocorrelation function consistent with hydrodynamic theory and molecular dynamics calculations.Comment: 30 pages, revision adding some clarifications and a new figure. See also arXiv:0803.035

    Neutrinoless double-beta decay. A brief review

    Full text link
    In this brief review we discuss the generation of Majorana neutrino masses through the see-saw mechanism, the theory of neutrinoless double-beta decay, the implications of neutrino oscillation data for the effective Majorana mass, taking into account the recent Daya Bay measurement of theta_13, and the interpretation of the results of neutrinoless double-beta decay experiments.Comment: 22 page

    Switchable ultrastrong coupling in circuit QED

    Get PDF
    Superconducting quantum circuits possess the ingredients for quantum information processing and for developing on-chip microwave quantum optics. From the initial manipulation of few-level superconducting systems (qubits) to their strong coupling to microwave resonators, the time has come to consider the generation and characterization of propagating quantum microwaves. In this paper, we design a key ingredient that will prove essential in the general frame: a swtichable coupling between qubit(s) and transmission line(s) that can work in the ultrastrong coupling regime, where the coupling strength approaches the qubit transition frequency. We propose several setups where two or more loops of Josephson junctions are directly connected to a closed (cavity) or open transmission line. We demonstrate that the circuit induces a coupling that can be modulated in strength and type. Given recent studies showing the accessibility to the ultrastrong regime, we expect our ideas to have an immediate impact in ongoing experiments

    Multifractality of quantum wave packets

    Full text link
    We study a version of the mathematical Ruijsenaars-Schneider model, and reinterpret it physically in order to describe the spreading with time of quantum wave packets in a system where multifractality can be tuned by varying a parameter. We compare different methods to measure the multifractality of wave packets, and identify the best one. We find the multifractality to decrease with time until it reaches an asymptotic limit, different from the mulifractality of eigenvectors, but related to it, as is the rate of the decrease. Our results could guide the study of experimental situations where multifractality is present in quantum systems.Comment: 6 pages, 4 figures, final version including a new figure (figure 1
    corecore