69 research outputs found

    A time-varying inertia pendulum: Analytical modelling and experimental identification

    Get PDF
    In this paper two of the main sources of non-stationary dynamics, namely the time-variability and the presence of nonlinearity, are analysed through the analytical and experimental study of a time-varying inertia pendulum. The pendulum undergoes large swinging amplitudes, so that its equation of motion is definitely nonlinear, and hence becomes a nonlinear time-varying system. The analysis is carried out through two subspace-based techniques for the identification of both the linear time-varying system and the nonlinear system. The flexural and the nonlinear swinging motions of the pendulum are uncoupled and are considered separately: for each of them an analytical model is built for comparisons and the identification procedures are developed. The results demonstrate that a good agreement between the predicted and the identified frequencies can be achieved, for both the considered motions. In particular, the estimates of the swinging frequency are very accurate for the entire domain of possible configurations, in terms of swinging amplitude and mass positio

    Maternal vaccination against COVID-19 and neonatal outcomes during Omicron: INTERCOVID-2022 study

    Get PDF
    Background: In early 2023, when Omicron was the variant of concern, we showed that vaccinating pregnant women decreased the risk for severe COVID-19-related complications and maternal morbidity and mortality. Objective: This study aimed to analyze the impact of COVID-19 during pregnancy on newborns and the effects of maternal COVID-19 vaccination on neonatal outcomes when Omicron was the variant of concern. Study design: INTERCOVID-2022 was a large, prospective, observational study, conducted in 40 hospitals across 18 countries, from November 27, 2021 (the day after the World Health Organization declared Omicron the variant of concern) to June 30, 2022, to assess the effect of COVID-19 in pregnancy on maternal and neonatal outcomes and to assess vaccine effectiveness. Women diagnosed with laboratory-confirmed COVID-19 during pregnancy were compared with 2 nondiagnosed, unmatched women recruited concomitantly and consecutively during pregnancy or at delivery. Mother-newborn dyads were followed until hospital discharge. The primary outcomes were a neonatal positive test for COVID-19, severe neonatal morbidity index, severe perinatal morbidity and mortality index, preterm birth, neonatal death, referral to neonatal intensive care unit, and diseases during the neonatal period. Vaccine effectiveness was estimated with adjustment for maternal risk profile. Results: We enrolled 4707 neonates born to 1577 (33.5%) mothers diagnosed with COVID-19 and 3130 (66.5%) nondiagnosed mothers. Among the diagnosed mothers, 642 (40.7%) were not vaccinated, 147 (9.3%) were partially vaccinated, 551 (34.9%) were completely vaccinated, and 237 (15.0%) also had a booster vaccine. Neonates of booster-vaccinated mothers had less than half (relative risk, 0.46; 95% confidence interval, 0.23-0.91) the risk of being diagnosed with COVID-19 when compared with those of unvaccinated mothers; they also had the lowest rates of preterm birth, medically indicated preterm birth, respiratory distress syndrome, and number of days in the neonatal intensive care unit. Newborns of unvaccinated mothers had double the risk for neonatal death (relative risk, 2.06; 95% confidence interval, 1.06-4.00) when compared with those of nondiagnosed mothers. Vaccination was not associated with any congenital malformations. Although all vaccines provided protection against neonatal test positivity, newborns of booster-vaccinated mothers had the highest vaccine effectiveness (64%; 95% confidence interval, 10%-86%). Vaccine effectiveness was not as high for messenger RNA vaccines only. Vaccine effectiveness against moderate or severe neonatal outcomes was much lower, namely 13% in the booster-vaccinated group (all vaccines) and 25% and 28% in the completely and booster-vaccinated groups, respectively (messenger RNA vaccines only). Vaccines were fairly effective in protecting neonates when given to pregnant women ≤100 days (14 weeks) before birth; thereafter, the risk increased and was much higher after 200 days (29 weeks). Finally, none of the neonatal practices studied, including skin-to-skin contact and direct breastfeeding, increased the risk for infecting newborns. Conclusion: When Omicron was the variant of concern, newborns of unvaccinated mothers had an increased risk for neonatal death. Neonates of vaccinated mothers had a decreased risk for preterm birth and adverse neonatal outcomes. Because the protective effect of COVID-19 vaccination decreases with time, to ensure that newborns are maximally protected against COVID-19, mothers should receive a vaccine or booster dose no more than 14 weeks before the expected date of delivery

    NOD2, RIP2 and IRF5 Play a Critical Role in the Type I Interferon Response to Mycobacterium tuberculosis

    Get PDF
    While the recognition of microbial infection often occurs at the cell surface via Toll-like receptors, the cytosol of the cell is also under surveillance for microbial products that breach the cell membrane. An important outcome of cytosolic recognition is the induction of IFNα and IFNβ, which are critical mediators of immunity against both bacteria and viruses. Like many intracellular pathogens, a significant fraction of the transcriptional response to Mycobacterium tuberculosis infection depends on these type I interferons, but the recognition pathways responsible remain elusive. In this work, we demonstrate that intraphagosomal M. tuberculosis stimulates the cytosolic Nod2 pathway that responds to bacterial peptidoglycan, and this event requires membrane damage that is actively inflicted by the bacterium. Unexpectedly, this recognition triggers the expression of type I interferons in a Tbk1- and Irf5-dependent manner. This response is only partially impaired by the loss of Irf3 and therefore, differs fundamentally from those stimulated by bacterial DNA, which depend entirely on this transcription factor. This difference appears to result from the unusual peptidoglycan produced by mycobacteria, which we show is a uniquely potent agonist of the Nod2/Rip2/Irf5 pathway. Thus, the Nod2 system is specialized to recognize bacteria that actively perturb host membranes and is remarkably sensitive to mycobacteria, perhaps reflecting the strong evolutionary pressure exerted by these pathogens on the mammalian immune system

    Met-Independent Hepatocyte Growth Factor-mediated regulation of cell adhesion in human prostate cancer cells

    Get PDF
    BACKGROUND: Prostate cancer cells communicate reciprocally with the stromal cells surrounding them, inside the prostate, and after metastasis, within the bone. Each tissue secretes factors for interpretation by the other. One stromally-derived factor, Hepatocyte Growth Factor (HGF), was found twenty years ago to regulate invasion and growth of carcinoma cells. Working with the LNCaP prostate cancer progression model, we found that these cells could respond to HGF stimulation, even in the absence of Met, the only known HGF receptor. The new HGF binding partner we find on the cell surface may help to clarify conflicts in the past literature about Met expression and HGF response in cancer cells. METHODS: We searched for Met or any HGF binding partner on the cells of the PC3 and LNCaP prostate cancer cell models, using HGF immobilized on agarose beads. By using mass spectrometry analyses and sequencing we have identified nucleolin protein as a novel HGF binding partner. Antibodies against nucleolin (or HGF) were able to ameliorate the stimulatory effects of HGF on met-negative prostate cancer cells. Western blots, RT-PCR, and immunohistochemistry were used to assess nucleolin levels during prostate cancer progression in both LNCaP and PC3 models. RESULTS: We have identified HGF as a major signaling component of prostate stromal-conditioned media (SCM) and have implicated the protein nucleolin in HGF signal reception by the LNCaP model prostate cancer cells. Antibodies that silence either HGF (in SCM) or nucleolin (on the cell surfaces) eliminate the adhesion-stimulatory effects of the SCM. Likewise, addition of purified HGF to control media mimics the action of SCM. C4-2, an LNCaP lineage-derived, androgen-independent human prostate cancer cell line, responds to HGF in a concentration-dependent manner by increasing its adhesion and reducing its migration on laminin substratum. These HGF effects are not due to shifts in the expression levels of laminin-binding integrins, nor can they be linked to expression of the known HGF receptor Met, as neither LNCaP nor clonally-derived C4-2 sub-line contain any detectable Met protein. Even in the absence of Met, small GTPases are activated, linking HGF stimulation to membrane protrusion and integrin activation. Membrane-localized nucelolin levels increase during cancer progression, as modeled by both the PC3 and LNCaP prostate cancer progression cell lines. CONCLUSION: We propose that cell surface localized nucleolin protein may function in these cells as a novel HGF receptor. Membrane localized nucleolin binds heparin-bound growth factors (including HGF) and appears upregulated during prostate cancer progression. Antibodies against nucleolin are able to ameliorate the stimulatory effects of HGF on met-negative prostate cancer cells. HGF-nucleolin interactions could be partially responsible for the complexity of HGF responses and met expression reported in the literature

    Colchicine for prevention of postpericardiotomy syndrome and postoperative atrial fibrillation : the COPPS-2 randomized clinical trial

    Get PDF
    IMPORTANCE: Postpericardiotomy syndrome, postoperative atrial fibrillation (AF), and postoperative effusions may be responsible for increased morbidity and health care costs after cardiac surgery. Postoperative use of colchicine prevented these complications in a single trial. OBJECTIVE: To determine the efficacy and safety of perioperative use of oral colchicine in reducing postpericardiotomy syndrome, postoperative AF, and postoperative pericardial or pleural effusions. DESIGN, SETTING, AND PARTICIPANTS: Investigator-initiated, double-blind, placebo-controlled, randomized clinical trial among 360 consecutive candidates for cardiac surgery enrolled in 11 Italian centers between March 2012 and March 2014. At enrollment, mean age of the trial participants was 67.5 years (SD, 10.6 years), 69% were men, and 36% had planned valvular surgery. Main exclusion criteria were absence of sinus rhythm at enrollment, cardiac transplantation, and contraindications to colchicine. INTERVENTIONS: Patients were randomized to receive placebo (n=180) or colchicine (0.5 mg twice daily in patients 6570 kg or 0.5 mg once daily in patients <70 kg; n=180) starting between 48 and 72 hours before surgery and continued for 1 month after surgery. MAIN OUTCOMES AND MEASURES: Occurrence of postpericardiotomy syndrome within 3 months; main secondary study end points were postoperative AF and pericardial or pleural effusion. RESULTS: The primary end point of postpericardiotomy syndrome occurred in 35 patients (19.4%) assigned to colchicine and in 53 (29.4%) assigned to placebo (absolute difference, 10.0%; 95% CI, 1.1%-18.7%; number needed to treat\u2009=\u200910). There were no significant differences between the colchicine and placebo groups for the secondary end points of postoperative AF (colchicine, 61 patients [33.9%]; placebo, 75 patients [41.7%]; absolute difference, 7.8%; 95% CI, -2.2% to 17.6%) or postoperative pericardial/pleural effusion (colchicine, 103 patients [57.2%]; placebo, 106 patients [58.9%]; absolute difference, 1.7%; 95% CI, -8.5% to 11.7%), although there was a reduction in postoperative AF in the prespecified on-treatment analysis (placebo, 61/148 patients [41.2%]; colchicine, 38/141 patients [27.0%]; absolute difference, 14.2%; 95% CI, 3.3%-24.7%). Adverse events occurred in 21 patients (11.7%) in the placebo group vs 36 (20.0%) in the colchicine group (absolute difference, 8.3%; 95% CI; 0.76%-15.9%; number needed to harm\u2009=\u200912), but discontinuation rates were similar. No serious adverse events were observed. CONCLUSIONS AND RELEVANCE: Among patients undergoing cardiac surgery, perioperative use of colchicine compared with placebo reduced the incidence of postpericardiotomy syndrome but not of postoperative AF or postoperative pericardial/pleural effusion. The increased risk of gastrointestinal adverse effects reduced the potential benefits of colchicine in this setting. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT0155218

    Improving Colorwave with the probabilistic approach for reader-to-reader anti-collision TDMA protocols

    No full text
    In RFID systems, wireless communication among readers and tags is subject to electromagnetic interference. In particular, when several readers work closely, forming so-called Dense Reader Environment (DRE), reader-to-reader collisions may occur. Several anti-collision protocols have been proposed in the literature to address this issue. Distributed Color Selection (DCS) and Colorwave are two effective state-of-the-art protocols, based on Time Division Multiple Access (TDMA). DCS provides great fairness, but it is not adaptable to changes in network topology, penalizing the throughput of the network. Colorwave is an enhanced version of DCS offering more flexibility. Moreover, a general probabilistic approach has been suggested for solving collisions in TDMA protocols and, in particular, it has been applied to DCS. In this work, the probabilistic method is implemented in the collision resolution routine of Colorwave and its effects are analyzed, confirming the validity of this mechanism for TDMA protocols. As proved by simulation results, the probabilistic approach can be adopted to improve throughput or fairness, without adding any other requiremen

    Time-dependent differential effects of natural and recombinant murine interferon-gamma on ornithine decarboxylase activity of tumor cells

    No full text
    : Incubation of quiescent tumor cells with fetal calf serum induced ornithine decarboxylase (ODCase) activity concomitantly with mitogenic stimulation. Pretreatment of cells with highly purified natural or recombinant murine interferon-gamma (MuIFN-gamma) for 5 h caused a dose-dependent increase of ODCase activity induced by fetal calf serum (FCS). Pretreatment of target cells with IFN-gamma for 5 h in absence of FCS stimulation did not induce ODCase activity. When pretreatment of cells with natural or recombinant MuIFN-gamma was prolonged for 18 h both ODCase activity and DNA synthesis induced by FCS were suppressed. By contrast when a mixture of MuIFN-alpha and -beta was used, ODCase activity was significantly suppressed after 5 h pretreatment compared to untreated controls. These results suggest that IFN-gamma exerts a differential effect on mitogen-stimulated events depending on the dose and the time of addition

    INTRACELLULAR CALCIUM REGULATES THE TYROSINE KINASE RECEPTOR ENCODED BY THE MET ONCOGENE

    No full text
    Previous work (Gandino, L., Di Renzo, M. F., Giordano, S., Bussolino, F., and Comoglio, P. M. (1990) Oncogene 5, 721-725) has shown that the tyrosine kinase activity of the receptor encoded by the MET protooncogene is negatively modulated by protein kinase C (PKC). We now show that an increase of intracellular Ca2+ has a similar inhibitory effect in vivo, via a PKC-independent mechanism. In GTL-16 cells the p145MET kinase is overexpressed and constitutively phosphorylated on tyrosine. A rapid and reversible decrease of p145MET tyrosine phosphorylation was induced by treatment with the calcium ionophores A23187 or ionomycin. Experiments performed with the ionophores in absence of extracellular calcium showed that a rise in cytoplasmic Ca2+ concentration to 450 nM (due to release from intracellular stores) resulted in a similar effect. These Ca2+ concentrations had no effect on p145MET autophosphorylation in an in vitro kinase assay. This suggests that the effect of Ca2+ on p145MET tyrosine phosphorylation is not direct but may be mediated by Ca2+-activated protein(s). Involvement of Ca2+-dependent tyrosine phosphatases was ruled out by experiments carried out in presence of Na3VO4. In vivo labeling with [P-32]orthophosphate showed that the rise of intracellular Ca2+ induces serine phosphorylation of p145MET on a specific phosphopeptide. This suggests that Ca2+ negatively modulates p145MET kinase through the phosphorylation of a critical serine residue by a Ca2+-activated serine kinase distinct from PKC
    corecore