109 research outputs found
Photoinduced Magnetization in a Thin Fe-CN-Co Film
The magnetization of a thin Fe-Co cyanide film has been investigated from 5 K
to 300 K and in fields up to 500 G. Upon illumination with visible light, the
magnetization of the film rapidly increases. The original cluster glass
behavior is further developed in the photoinduced state and shows substantial
changes in critical temperature and freezing temperature.Comment: 2 pages, 2 figures, 1 table, International Conference on Magnetism
200
Historical perspective of cultural practices in relation to productivity and drought – part 1
Non-Peer Reviewe
The ZEPLIN-III dark matter detector: performance study using an end-to-end simulation tool
We present results from a GEANT4-based Monte Carlo tool for end-to-end
simulations of the ZEPLIN-III dark matter experiment. ZEPLIN-III is a two-phase
detector which measures both the scintillation light and the ionisation charge
generated in liquid xenon by interacting particles and radiation. The software
models the instrument response to radioactive backgrounds and calibration
sources, including the generation, ray-tracing and detection of the primary and
secondary scintillations in liquid and gaseous xenon, and subsequent processing
by data acquisition electronics. A flexible user interface allows easy
modification of detector parameters at run time. Realistic datasets can be
produced to help with data analysis, an example of which is the position
reconstruction algorithm developed from simulated data. We present a range of
simulation results confirming the original design sensitivity of a few times
pb to the WIMP-nucleon cross-section.Comment: Submitted to Astroparticle Physic
Non-volant tetrapods from Reserva Biológica de Duas Bocas, State of Espírito Santo, Southeastern Brazil
Condições sanitárias das águas de irrigação de hortas do município de São Paulo: II. Isolamento de vírus entéricos
Amphibians and reptiles from a highly diverse area of the Caatinga domain: composition and conservation implications
Evolutionary characterization of lung adenocarcinoma morphology in TRACERx
Lung adenocarcinomas (LUADs) display a broad histological spectrum from low-grade lepidic tumors through to mid-grade acinar and papillary and high-grade solid, cribriform and micropapillary tumors. How morphology reflects tumor evolution and disease progression is poorly understood. Whole-exome sequencing data generated from 805 primary tumor regions and 121 paired metastatic samples across 248 LUADs from the TRACERx 421 cohort, together with RNA-sequencing data from 463 primary tumor regions, were integrated with detailed whole-tumor and regional histopathological analysis. Tumors with predominantly high-grade patterns showed increased chromosomal complexity, with higher burden of loss of heterozygosity and subclonal somatic copy number alterations. Individual regions in predominantly high-grade pattern tumors exhibited higher proliferation and lower clonal diversity, potentially reflecting large recent subclonal expansions. Co-occurrence of truncal loss of chromosomes 3p and 3q was enriched in predominantly low-/mid-grade tumors, while purely undifferentiated solid-pattern tumors had a higher frequency of truncal arm or focal 3q gains and SMARCA4 gene alterations compared with mixed-pattern tumors with a solid component, suggesting distinct evolutionary trajectories. Clonal evolution analysis revealed that tumors tend to evolve toward higher-grade patterns. The presence of micropapillary pattern and ‘tumor spread through air spaces’ were associated with intrathoracic recurrence, in contrast to the presence of solid/cribriform patterns, necrosis and preoperative circulating tumor DNA detection, which were associated with extra-thoracic recurrence. These data provide insights into the relationship between LUAD morphology, the underlying evolutionary genomic landscape, and clinical and anatomical relapse risk
Lung adenocarcinoma promotion by air pollutants
A complete understanding of how exposure to environmental substances promotes cancer formation is lacking. More than 70 years ago, tumorigenesis was proposed to occur in a two-step process: an initiating step that induces mutations in healthy cells, followed by a promoter step that triggers cancer development1. Here we propose that environmental particulate matter measuring ≤2.5 μm (PM2.5), known to be associated with lung cancer risk, promotes lung cancer by acting on cells that harbour pre-existing oncogenic mutations in healthy lung tissue. Focusing on EGFR-driven lung cancer, which is more common in never-smokers or light smokers, we found a significant association between PM2.5 levels and the incidence of lung cancer for 32,957 EGFR-driven lung cancer cases in four within-country cohorts. Functional mouse models revealed that air pollutants cause an influx of macrophages into the lung and release of interleukin-1β. This process results in a progenitor-like cell state within EGFR mutant lung alveolar type II epithelial cells that fuels tumorigenesis. Ultradeep mutational profiling of histologically normal lung tissue from 295 individuals across 3 clinical cohorts revealed oncogenic EGFR and KRAS driver mutations in 18% and 53% of healthy tissue samples, respectively. These findings collectively support a tumour-promoting role for PM2.5 air pollutants and provide impetus for public health policy initiatives to address air pollution to reduce disease burden
Prospective validation of ORACLE, a clonal expression biomarker associated with survival of patients with lung adenocarcinoma
Human tumors are diverse in their natural history and response to treatment, which in part results from genetic and transcriptomic heterogeneity. In clinical practice, single-site needle biopsies are used to sample this diversity, but cancer biomarkers may be confounded by spatiogenomic heterogeneity within individual tumors. Here we investigate clonally expressed genes as a solution to the sampling bias problem by analyzing multiregion whole-exome and RNA sequencing data for 450 tumor regions from 184 patients with lung adenocarcinoma in the TRACERx study. We prospectively validate the survival association of a clonal expression biomarker, Outcome Risk Associated Clonal Lung Expression (ORACLE), in combination with clinicopathological risk factors, and in stage I disease. We expand our mechanistic understanding, discovering that clonal transcriptional signals are detectable before tissue invasion, act as a molecular fingerprint for lethal metastatic clones and predict chemotherapy sensitivity. Lastly, we find that ORACLE summarizes the prognostic information encoded by genetic evolutionary measures, including chromosomal instability, as a concise 23-transcript assay
- …
