1,022 research outputs found

    Global warming and wine quality: Are we close to the tipping point?

    Get PDF
    Wine grapes are one of the most lucrative crops in the world and this value is founded heavily on traditional winegrowing regions established over hundreds of years. These regions are now experiencing marked changes in climate. People speculate that global warming could reshape the distribution of premium wine-growing regions, pushing regions to higher latitudes and elevations with cooler temperatures. A major redistribution of this kind would be catastrophic for numerous regional economies. Here we examine relationships between warming, fruit ripening, and wine quality in two renowned red wine regions; Napa Valley, California, USA, and Bordeaux, France. We show that both regions have warmed substantially over the past 60+ years and that until now this warming has contributed to increases in the average wine quality. However, ripening relationships revealed that we are reaching a plateau and raise concerns that we may be approaching a tipping point in traditional wine-growing regions

    Varietal responses to soil water deficit: first results from a common-garden vineyard near Bordeaux France

    Get PDF
    In wine producing regions around the world, climate change has the potential to decrease the frequency and amount of precipitation and increase average and extreme temperatures. This will both lower soil water availability and increase evaporative demand in vineyards, thereby increasing soil water deficits and associated vine stress. Grapevines control their water status by regulating stomatal closure and other changes to internal plant hydraulics. These responses are complex and have not been clearly characterized across a wide range of different Vitis vinifera varieties. Understanding how vine water status responds to changes in soil water deficits and other variables will help growers modify vineyard design and management practices to meet their quality and yield objectives. Carbon isotope discrimination measurements of certain plant tissues have been shown to provide effective characterization of stomatal closure, while water potential measurements provide a well-proven measure of overall vine water status. Using replicated data collected from an experimental common-garden vineyard at the Institut des Sciences de la Vigne et du Vin (ISVV) near Bordeaux, France, this project will analyze the effects on carbon isotope discrimination across 39 varieties and water potential across eight varieties against estimates of soil water deficits made using a water balance model running on local meteorology and considering the phenology of each variety. Similar to the literature, preliminary analysis finds as soil water deficit increases, carbon isotope data suggests greater stomatal closure and water potential measurements indicate greater vine stress. For both parameters, analysis will be performed to distinguish any difference in these responses between varieties

    GrapevineXL reliably predicts multi-annual dynamics of vine water status, berry growth, and sugar accumulation in vineyards

    Get PDF
    Climate and water availability greatly affect each season’s grape yield and quality. Using models to accurately predict environment impacts on fruit productivity and quality is a huge challenge.We calibrated and validated the functional-structuralmodel, GrapevineXL, with a data set including grapevine seasonal midday stem water potential (Ψ xylem), berry dry weight (DW), fresh weight (FW), and sugar concentration per volume ([Sugar]) for a wine grape cultivar (Vitis vinifera cv.Cabernet Franc) in field conditions over 13 years in Bordeaux, France. Our results showed that the model could make a fair prediction of seasonal Ψ xylem and good-to-excellent predictions of berry DW, FW, [Sugar] and leaf gas exchange responses to predawn andmidday leaf water potentials under diverse environmental conditions with 14 key parameters. By running virtual experiments to mimic climate change, an advanced veraison (i.e. the onset of ripening) of 14 and 28 days led to significant decreases of berry FW by 2.70% and 3.22%, clear increases of berry [Sugar] by 2.90% and 4.29%, and shortened ripening duration in 8 out of 13 simulated years, respectively. Moreover, the impact of the advanced veraison varied with seasonal patterns of climate and soil water availability. Overall, the results showed that the GrapevineXLmodel can predict plant water use and berry growth in field conditions and could serve as a valuable tool for designing sustainable vineyard management strategies to cope with climate change

    Using δ13C and hydroscapes for discriminating cultivar specific drought responses

    Get PDF
    This article is published in cooperation with Terclim 2022 (XIVth International Terroir Congress and 2nd ClimWine Symposium), 3-8 July 2022, Bordeaux, France.Measurement of carbon isotope discrimination in berry juice at maturity (δ13C) provides an integrated assessment of vine water status and water use efficiency (WUE) during the period of berry ripening, and when collected over multiple seasons, can provide an indication of drought stress responses. Berry juice δ13C measurements were carried out on 48 different varieties planted in a common garden experiment in Bordeaux, France from 2014 through 2020 and found important differences across this large panel of varieties. Cluster analysis showed that δ13C values are likely affected by the differing phenology of each variety, resulting in berry ripening of different varieties taking place under different conditions of soil water availability within the same year. Accounting for these phenological differences, the cluster analysis created a classification of varieties that corresponds well to our current empirical understanding of their relative drought tolerance. In addition, using measurements of predawn and midday leaf water potential measurements collected over four seasons on a subset of six varieties, a hydroscape approach was used to develop a list of metrics indicative of the sensitivity of stomatal regulation to water stress (i.e., an/isohydric behaviour). Key hydroscape metrics were also found to be well correlated with some δ13C metrics. A variety’s water potential regulation as characterized by a minimum critical leaf water potential as determined from hydroscapes was strongly correlated to δ13C values under well-watered conditions, suggesting that the latter may be a useful indicator of drought stress response.COntinental To coastal Ecosystems: evolution, adaptability and governanc

    Estimating Bulk Stomatal Conductance in Grapevine Canopies

    Get PDF
    In response to changes in their environments, grapevines regulate transpiration using various physiological mechanisms that alter conductance of water through the soil-plant-atmosphere continuum. Expressed as bulk stomatal conductance at the canopy scale, it varies diurnally in response to changes in vapor pressure deficit and net radiation, and over the season to changes in soil water deficits and hydraulic conductivity of both the soil and plant. To help with future characterization of this dynamic response, a simplified method is presented for determining bulk stomatal conductance based on the crop canopy energy flux model by Shuttleworth and Wallace using measurements of individual vine sap flow, temperature and humidity within the vine canopy, and estimates of net radiation absorbed by the vine canopy. The methodology presented respects the energy flux dynamics of vineyards with open canopies, while avoiding problematic measurements of soil heat flux and boundary layer conductance needed by other methods, which might otherwise interfere with ongoing vineyard management practices. Based on this method and measurements taken on several vines in a non-irrigated vineyard in Bordeaux France, bulk stomatal conductance was estimated on 15-minute intervals from July to mid-September 2020 producing values similar to those presented for vineyards in the literature. Time-series plots of this conductance show significant diurnal variation and seasonal decreases in conductance associated with increased vine water stress as measured by predawn leaf water potential. Global sensitivity analysis using non-parametric regression found transpiration flux and vapor pressure deficit to be the most important input variables to the calculation of bulk stomatal conductance, with absorbed net radiation and bulk boundary layer conductance being much less important. Conversely, bulk stomatal conductance was one of the most important inputs when calculating vine transpiration, emphasizing the usefulness of characterizing its dynamic response for the purpose of estimating vine canopy transpiration in water use models.COntinental To coastal Ecosystems: evolution, adaptability and governanc

    Variety-specific response of bulk stomatal conductance of grapevine canopies to changes in net radiation, atmospheric demand, and drought stress

    Get PDF
    In wine growing regions around the world, climate change has the potential to affect vine transpiration and overall vineyard water use due to related changes in daily atmospheric conditions and soil water deficits. Grapevines control their transpiration in response to such changes by regulating conductance of water through the soil-plant-atmosphere continuum. The response of bulk stomatal conductance, the vine canopy equivalent of stomatal conductance, to such changes were studied on Cabernet-Sauvignon, Merlot, Tempranillo, Ugni blanc, and Semillon vines in a non-irrigated vineyard in Bordeaux France. Whole-vine sap flow, temperature and humidity in the vine canopy, and net radiation absorbed by the vine canopy were measured on 15-minute intervals from early July through mid-September 2020, together with periodic measurements of leaf area, canopy porosity, and predawn leaf water potential. From these data, bulk stomatal conductance was calculated on 15-minute intervals, and multiple linear regression analysis was performed to identify key variables and their relative effect on conductance. For the regression analysis, attention was focused on addressing non-linearity and collinearity in the explanatory variables and developing a model that was readily interpretable.Variability of vapour pressure deficit in the vine canopy over the day and predawn water potential over the season explained much of the variability in bulk stomatal conductance overall, with relative differences between varieties appearing to be driven in large part by differences in conductance response to predawn water potential between the varieties. Transpiration simulations based on the regression equations found similar differences between varieties in terms of daily and seasonal transpiration. These simulations also compared well with those from an accepted vineyard water balance model, although there appeared to be differences between the two approaches in the rate at which conductance, and hence transpiration is reduced as a function of decreasing soil water content (i.e., increasing water deficit stress). By better characterizing the response of bulk stomatal conductance, the dynamics of vine transpiration can be better parameterized in vineyard water use modeling of current and future climate scenarios.COntinental To coastal Ecosystems: evolution, adaptability and governanc

    An operational model for capturing grape ripening dynamics to support harvest decisions

    Get PDF
    Grape ripening is a critical phenological phase during which many metabolites that impact wine quality accumulate in the berries. Major changes in berry composition include a rapid increase in sugar and a decrease in malic acid content and concentration. Its duration is highly variable depending on grapevine variety, climatic parameters, soil type and management practices. Together with the timing of mid-veraison, this duration determines when grapes can be harvested. Viticulturists and winemakers monitor the sugar-to-total acidity ratio (S/TA) during grape ripening and start harvesting grapes when this ratio reaches the optimum value for the desired wine style. The S/TA ratio evolves linearly as a function of thermal summation during the first four weeks following the onset of ripening. The linearity of the evolution of the S/TA ratio as a function of thermal time during the first four weeks following mid-veraison is applied in this study on two large data sets encompassing (1) 53 varieties studied during 10 years with two to four replicates for each combination of year and cultivar and (2) two varieties, cultivated on three soil types over 13 years. Grape ripening speed is highly variable. The effects of the year impact ripening speed more than the effects of the soil or the variety, although all three effects are highly significant. Grape ripening speed decreases with berry weight and also varies with vine water status. By using this approach, viticulturists and winemakers can assess four weeks after mid-veraison, for each individual vineyard parcel, at what speed grape ripening progresses. Combined with precise mid-veraison scoring, expertise from previous vintages and complementary approaches like sensory assessment of berries, it allows harvest date estimates to be fine-tuned. The results of this study can also be used to identify slow ripening varies, which are better performing in warm climates and, thus, better adapted to climate change

    Adapting wine grape production to climate change through canopy architecture manipulation and irrigation in warm climates

    Get PDF
    Grape growing regions are facing constant warming of the growing season temperature as well as limitations on ground water pumping used for irrigating to overcome water deficits. Trellis systems are utilized to optimize grapevine production, physiology, and berry chemistry. This study aimed to compare 6 trellis systems with 3 levels of applied water amounts based on different replacements of crop evapotranspiration (ETc) in two consecutive seasons. The treatments included a vertical shoot position (VSP), two modified VSPs (VSP60 and VSP80), a single high wire (SH), a high quadrilateral (HQ), and a Guyot pruned VSP (GY) combined with 25%, 50%, and 100% ETc water replacement. The SH had greater yields, whereas HQ was slower to reach full production potential. At harvest in both years, the accumulation of anthocyanin derivatives was enhanced in SH, whereas VSPs decreased them. As crown porosity increased (mostly VSPs), berry flavonol concentration and likewise molar % of quercetin in berries increased. Conversely, as leaf area increased, total flavonol concentration and molar % of quercetin decreased, indicating a preferential arrangement of leaf area along the canopy for overexposure of grape berry with VSP types. The irrigation treatments revealed linear trends for components of yield, where greater applied water resulted in larger berry size and likewise greater yield. 25% ETc was able to increase berry anthocyanin and flavonol concentrations. Overall, this study evidenced the efficiency of trellis systems for optimizing production and berry composition in Californian climate, also, the feasibility of using flavonols as the indicator of canopy architecture

    Esca grapevine disease involves leaf hydraulic failure and represents a unique premature senescence process

    Get PDF
    Xylem anatomy may change in response to environmental or biotic stresses. Vascular occlusion, an anatomical modification of mature xylem, contributes to plant resistance and susceptibility to different stresses. In woody organs, xylem occlusions have been examined as part of the senescence process, but their presence and function in leaves remain obscure. In grapevine, many stresses are associated with premature leaf senescence inducing discolorations and scorched tissue in leaves. However, we still do not know whether the leaf senescence process follows the same sequence of physiological events and whether leaf xylem anatomy is affected in similar ways. In this study, we quantified vascular occlusions in midribs from leaves with symptoms of the grapevine disease esca, magnesium deficiency and autumn senescence. We found higher amounts of vascular occlusions in leaves with esca symptoms (in 27% of xylem vessels on average), whereas the leaves with other symptoms (as well as the asymptomatic controls) had far fewer occlusions (in 3% of vessels). Therefore, we assessed the relationship between xylem occlusions and esca leaf symptoms in four different countries (California in the USA, France, Italy and Spain) and eight different cultivars. We monitored the plants over the course of the growing season, confirming that vascular occlusions do not evolve with symptom age. Finally, we investigated the hydraulic integrity of leaf xylem vessels by optical visualization of embolism propagation during dehydration. We found that the occlusions lead to hydraulic dysfunction mainly in the peripheral veins compared with the midribs in esca symptomatic leaves. These results open new perspectives on the role of vascular occlusions during the leaf senescence process, highlighting the uniqueness of esca leaf symptoms and its consequence on leaf physiology
    corecore