4,026 research outputs found

    Finite-volume matrix elements of two-body states

    Get PDF
    In this talk, we present a framework for studying structural information of resonances and bound states coupling to two-hadron scattering states. This makes use of a recently proposed finite-volume formalism to determine a class of observables that are experimentally inaccessible but can be accessed via lattice QCD. In particular, we shown that finite-volume two-body matrix elements with one current insertion can be directly related to scattering amplitudes coupling to the external current. For two-hadron systems with resonances or bound states, one can extract the corresponding form factors of these from the energy-dependence of the amplitudes.Comment: 7 pages, 2 figures, Proceedings of Lattice 201

    Inbreeding depression on beef cattle traits: Estimates, linearity of effects and heterogeneity among sire-families

    Get PDF
    Records from up to 19054 registered cows and 10297 calves in 155 herds of the Alentejana cattle breed were used to study the effects of individual (Fi) and maternal (Fm) inbreeding on reproductive, growth and carcass traits, as well as assessing the importance of non-linear associations between inbreeding and performance, and evaluating the differences among sire-families in the effect of Fi and Fm on calf weight at 7 months of age (W7M). Overall, regression coefficients of performance traits on inbreeding were small, indicating a minor but still detrimental effect of both Fi and Fm on most traits. The traits with the highest percentage impact of Fi were total number of calvings through life and calf weight at 3 months of age (W3M), followed by longevity and number of calves produced up to 7 years, while the highest effect of Fm was on W3M. Inbreeding depression on feed efficiency and carcass traits was extremely small and not significant. No evidence was found of a non-linear association between inbreeding and performance for the traits analyzed. Large differences were detected among sire-families in inbreeding depression on W7M, for both Fi and Fm, encouraging the possibility of incorporating sire effects on inbreeding depression into selection decisions

    Helminth infections, atopy, asthma and allergic diseases: protocol for a systematic review of observational studies worldwide.

    Get PDF
    INTRODUCTION: Childhood infections, particularly those caused by helminths are considered to be important environmental exposures influencing the development of allergic diseases. However, epidemiological studies focusing on the relationship between helminth infections and risk of allergic diseases, performed worldwide, show inconsistent findings. Previous systematic reviews of observational studies published 10 or more years ago showed conflicting findings for effects of helminths on allergic diseases. Over the past 10 years there has been growing literature addressing this research area and these need to be considered in order to appreciate the most contemporary evidence. The objective of the current systematic review will be to provide an up-to-date synthesis of findings of observational studies investigating the influence of helminth infections on atopy, and allergic diseases. METHODS AND ANALYSIS: This systematic review protocol was registered at PROSPERO. We will search Cochrane Library, MEDLINE, EMBASE, CINAHL, AMED, ISI Web of Science, WHO Global Health Library, Scielo, IndMed, PakMediNet, KoreaMed, Ichushi for published studies from 1970 to January 2020. Bibliographies of all eligible studies will be reviewed to identify additional studies. Unpublished and ongoing research will also be searched in key databases. There will be no language or geographical restrictions regarding publications. Critical Appraisal Skills Programme quality assessment tool will be used to appraise methodological quality of included studies. A descriptive summary with data tables will be constructed, and if adequate, meta-analysis using random-effects will be performed. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses checklist will be followed for reporting of the systematic review. ETHICS AND DISSEMINATION: Since this systematic review will be only based on published and retrievable literature, no ethics approval will be sought. The multidisciplinary team performing this systematic review will participate in relevant dissemination activities. Findings will be presented at scientific meetings and publish the systematic review in international, peer-reviewed, open-access journals. PROSPERO REGISTRATION NUMBER: CRD42020167249

    Factors influencing wetland distribution and structure, including ecosystem function of ephemeral wetlands, in Nelson Mandela Bay Municipality (NMBM), South Africa

    Get PDF
    The Nelson Mandela Bay Municipality (NMBM) is a semi-arid area along the southern coastline of South Africa (SA). Until recently, there was no systematic approach to research on wetland systems in the NMBM. The systematic identification of wetlands was made more difficult by the relatively large number of small, ephemeral systems that can be difficult to delineate. This has meant that fundamental knowledge on wetland distribution, structure and function has been limited and, consequently, management and conservation strategies have been based on knowledge on systems from other regions of the country. Environmental processes occur at different spatial and temporal scales. These processes have an effect on the abiotic factors and biotic structure of wetlands, resulting in inherently complex systems. The location of the NMBM provides a good study area to research some of these environmental and biological attributes at different spatial scales, due to the variability in the underlying geology, geomorphology, vegetation types and the spatial and temporal variability in rainfall, within a relatively small area of 1951 km2. Thus, the aim of this study was to determine the factors influencing wetland distribution, structure and ecosystem functioning within the NMBM. The first Research Objective of work presented here was to identify wetlands using visual interpretation of aerial photographs. A total of 1712 wetlands were identified within the NMBM using aerial photographs, covering an area of 17.88 km2 (Chapter 5). The majority of these wetlands were depressions, seeps and wetland flats. Valley bottom wetlands (channelled and unchannelled) and floodplain wetlands were also identified. A range of wetland sizes was recorded, with 86% of the wetlands being less than 1 ha in size and the largest natural wetland being a floodplain wetland of 57 ha, located south of the Swartkops River. The identified wetlands were used to create a wetland occurrence model using logistic regression (LR) techniques (Chapter 5), in accordance with Objective 2 of the study. An accuracy of 66% was obtained, which was considered acceptable for a semi-arid climate with a relatively high degree of spatial and temporal rainfall variability. The model also highlighted several key environmental variables that are associated with wetland occurrence and distribution at various spatial scales. Some of the important variables included precipitation, evapotranspiration, temperature, flow accumulation and groundwater occurrence. Wetland distribution patterns were described in Chapter 6. Spatial statistics were used to identify whether wetlands are clustered and, therefore, form mosaics within the surrounding landscape (Objective 3). Systems were found to be highly clustered, with 43% of wetlands located within 200 m of another system. Clustering and wetland presence was especially prominent in the southern portion of the Municipality, which is also associated with a higher mean annual precipitation. Smaller wetlands were also significantly more clustered than larger systems (Average Nearest Neighbour statistic, p-value < 0.0001). Average distances also significantly varied according to HGM type, with depressions being the most geographically isolated wetland type compared to the other HGM types. Overall, distances between wetlands indicated good proximal connectivity. Potentially vulnerable areas associated with wetland systems were identified successfully using landscape variables, in accordance with Objective 4. These variables were: land cover, slope gradient, flow accumulation, APAN evaporation, mean annual precipitation (MAP) and annual heat units. The existing Critical Biodiversity Network was also used in connection with these variables to further identify potentially vulnerable areas. The abiotic and biotic characteristics were decribed for three hydrogeomorphic (HGM) types at a total of 46 wetland sites (Chapter 7), as per Objective 5. Depressions, seeps and wetland flats were sampled across the different geological, vegetation and rainfall zones within the NMBM. The wetland sites were delineated up to Level 6 of the Classification System used in SA, and the various abiotic and biotic characteristics of these systems were defined. A total of 307 plant, 144 aquatic macroinvertebrate and 10 tadpole species were identified. Of these species, over 90 species were Eastern Cape and SA endemic species, as well as three threatened species on the IUCN Red List. Multivariate analyses (including Bray-Curtis similarity resemblance analyses, distance-based redundancy analyses, SIMPER analyses and BIOENV analysis in Primer), together with environmental data, were used to define community structure at an HGM level, in accordance with Objective 5. The importance of the spatial scale of the environmental data used to define plant and macroinvertebrate community structure was described in Chapter 7, to address Objective 6. The results showed that both broad-scale and site-level characteristics were important in distinguishing community structure within the HGM types that superseded general location, the sample timing or the stage of inundation. These results also indicated that a combination of both landscape and site-level data are important in defining the community structure in the various HGM types. Some of the important environmental variables that explained some of species assemblages were similar to those in the wetland occurrence model (Chapter 5), with some additional hydrological and soil physico-chemical parameters (e.g. soil electrical conductivity, soil pH, and surface and subsurface water nutrients). These significant variables indicate the complex, multi-scalar role of environmental attributes on wetland distribution, structure and function

    Human Dynamics: The Correspondence Patterns of Darwin and Einstein

    Full text link
    While living in different historical era, Charles Darwin (1809-1882) and Albert Einstein (1879-1955) were both prolific correspondents: Darwin sent (received) at least 7,591 (6,530) letters during his lifetime while Einstein sent (received) over 14,500 (16,200). Before email scientists were part of an extensive university of letters, the main venue for exchanging new ideas and results. But were the communication patterns of the pre-email times any different from the current era of instant access? Here we show that while the means have changed, the communication dynamics has not: Darwin's and Einstein's pattern of correspondence and today's electronic exchanges follow the same scaling laws. Their communication belongs, however, to a different universality class from email communication, providing evidence for a new class of phenomena capturing human dynamics.Comment: Supplementary Information available at http://www.nd.edu/~network

    Network design decisions in supply chain planning

    Get PDF
    Structuring global supply chain networks is a complex decision-making process. The typical inputs to such a process consist of a set of customer zones to serve, a set of products to be manufactured and distributed, demand projections for the different customer zones, and information about future conditions, costs (e.g. for production and transportation) and resources (e.g. capacities, available raw materials). Given the above inputs, companies have to decide where to locate new service facilities (e.g. plants, warehouses), how to allocate procurement and production activities to the variousmanufacturing facilities, and how to manage the transportation of products through the supply chain network in order to satisfy customer demands. We propose a mathematical modelling framework capturing many practical aspects of network design problems simultaneously. For problems of reasonable size we report on computational experience with standard mathematical programming software. The discussion is extended with other decisions required by many real-life applications in strategic supply chain planning. In particular, the multi-period nature of some decisions is addressed by a more comprehensivemodel, which is solved by a specially tailored heuristic approach. The numerical results suggest that the solution procedure can identify high quality solutions within reasonable computational time
    corecore