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In this talk, we present a framework for studying structural information of resonances and bound
states coupling to two-hadron scattering states. This makes use of a recently proposed finite-
volume formalism [1] to determine a class of observables that are experimentally inaccessible
but can be accessed via lattice QCD. In particular, we shown that finite-volume two-body matrix
elements with one current insertion can be directly related to scattering amplitudes coupling to
the external current. For two-hadron systems with resonances or bound states, one can extract the
corresponding form factors of these from the energy-dependence of the amplitudes.
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Finite-volume formalism Alessandro Baroni

1. Introduction

Lattice QCD (LQCD) calculations of multi-hadron systems are expected to play a crucial role
in addressing a variety of questions about the nature of the strong interaction. An example of this is
the study of resonance properties (for example of the ρ meson) and in particular their form factors.
Although the elastic form factors of resonances are experimentally inaccessible, they could provide
important information of the structure and ultimately the nature of low-lying QCD states that are
unstable. Another example, relevant for nuclear physics, is the study of electroweak processes in
two-body systems (such as n+ p→ d + γ and the proton-proton fusion process driving our sun).
Among other things, LQCD will be able to constrain and guide more standard methodologies used
to study low-energy nuclear physics, such as effective field theories.

LQCD calculations of multi-hadron systems give finite-volume matrix elements that, in order
to acquire physical meaning, must be connected to the corresponding infinite-volume amplitudes.
In some cases it is possible to derive a finite-volume formalism that maps the energies and matrix
elements calculated on the lattice to physically-relevant, infinite-volume quantities. Early work in
this direction was done by Lüscher [2, 3], who gave a relation between the finite-volume energy
spectrum below the lowest multi-particle threshold and infinite-volume scattering amplitude. This
framework for two-body systems has been generalized in a series of publications [4, 5, 6, 7, 8, 9,
10, 11] to particles with generic spin and to multiple channels. More recently it has been shown
that is possible to derive (and implement) perturbative [12] and all-orders [13, 14, 15, 9, 16, 17, 18,
19, 20, 21, 1] relations between electroweak finite-volume matrix elements and the corresponding
transition amplitudes.1

In the following we discuss the model-independent and relativistic, finite-volume formalism
developed in Ref. [1] to study reactions of the type 2+J→ 2 (with 2 denoting two-hadron states and
J a local current). We explain how the formalism can be used to extract resonant form factors, and
as a specific example we will consider the electromagnetic form factors of the ρ meson. We further
describe some of the crucial steps in the implementation of this framework, which is complicated
in part by the appearance of a new kinematic function (an analog of the generalized zeta-function
[23] that arises in 2→ 2).

2. Roadmap

The extraction of the electromagnetic form factors of the ρ from numerical LQCD calculations
requires a series of ingredients and a somewhat involved procedure, which is sketched in Fig. 1. We
recall that, since the ρ is a resonance, its electromagnetic form factors can be defined by analytically
continuing the initial and final ππ energies, appearing in the ππγ?→ ππ scattering amplitude, to
the ρ pole in the complex plane.2 This is shown by the horizontal orange arrow in Fig. 1. Therefore
the main problem we are left with is how to obtain the ππγ?→ ππ from LQCD calculations, and to
this aim we need three finite-volume ingredients and corresponding mappings that are summarized
in the points below.

1For a recent review on these techniques and their implementation, we point the reader to Ref. [22]
2For a recent implementation of this, we point the reader to Ref. [24], where the transition π→ γ?ρ form factor was

obtained by analytically continuing the π → γ?ππ amplitude onto the ρ-pole.
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• The finite-volume spectrum of two pions related to the infinite-volume ππ scattering ampli-
tude by means of the well-established Lüscher formalism.

• The finite-volume matrix element for one-to-one process with one insertion of the external
current J, that is equal to the single pion form factor (up to a kinematic prefactor and expo-
nentially suppressed volume corrections).

• The finite-volume matrix element for two-to-two processes with one insertion of the external
current J, that can be related to the corresponding infinite-volume scattering amplitude using
the formalism derived in Ref. [1] whose crucial ingredient is a new set of finite-volume
functions. We note here that in order to perform this mapping, ingredients from the two
previous points are needed as shown from the the curved red arrows in Fig. 1.

Since the first two points are well-known, we will discuss our progress in the implementation
of the third step.

+

=

+

+...

finite-volume  
spectrum

finite-volume 
one-body

matrix elements +

=

+

+...

partial wave 
amplitudes

amplitudes
two-hadron
form factors +

=

+

+...

finite-volume 
two-to-two

matrix elements
2 + J ! 2

amplitudes and 
form factors

1 + J ! 1

up to O(e�m⇡L)

corrections

Lüscher 
formalism

Figure 1: Scheme that shows the workflow necessary to extract the ρ meson form factors from numerical
LQCD calculations. See the text for a detailed description.

3. Covariant finite-volume formalism for 2+ J→ 2

We focus on the simplified case where the two incoming and two outgoing mesons have de-
generate masses and the current insertion has one Lorentz index. The 4-vectors Pµ

i ≡ (Ei,Pi) and
Pµ

f ≡ (E f ,P f ) denote respectively the 4-momentum in the finite-volume frame of the incoming and
outgoing state. The energies in the center-of-momentum (c.m.) frame are

E?
i ≡

√
P2

i =

√
E2

i −P2
i , and E?

f ≡
√

P2
f =

√
E2

f −P2
f . (3.1)

Adopting the notation of Ref. [14], ? denotes quantities in either the incoming or the outgoing
c.m. frame. Our goal is to extract the following amplitude

Wµ(Pf ,k′;Pi,k)≡ 〈Pf ,k′;out|Jµ(0)|Pi,k; in〉conn , (3.2)

2

~~) ~ 
;====:'. 

(~Jij::1 1 • 
l.::-::~ ..... ::}7 .1~-<I 
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where k and k′ are the on-shell four-momenta of one of the ingoing and outgoing particles respec-
tively, and the “conn” subscript refers to the fact that only the fully connected piece is kept. The
initial and final states in Eq. (3.2) are standard two-particle asymptotic states and Jµ(0) is a local
vector current insertion.

This amplitude has radiative divergences, which do not contribute to the finite-volume matrix
element. With this in mind, we define the divergence-free amplitude

Wdf;µ ≡Wµ − iM (Pf ,k′,k)
i

(Pf − k)2−m2 wµ −wµ

i
(Pi− k′)2−m2 iM †(Pi,k′,k) , (3.3)

where M is closely related to the full two-to-two scattering amplitude on the mass shell and wµ is
the single-particle matrix element of Jµ . (See Ref. [25] for more details.)

Note that Wdf is defined by subtracting kinematic singularities from the full scattering am-
plitude for 2+ J → 2. Here we see a major difference in this work as compared to Ref. [1]. In
particular, the definition of the quantity Wdf;µ is fully Lorentz covariant. The two definitions are
both valid, but the one used here simplifies the implementation of the formalism.

We are now in a position to show the final formula that allows one to connect the finite-volume
matrix elements with the corresponding infinite-volume quantities [1]∣∣∣〈Pf ,L|Jµ(0)|Pi,L〉

∣∣∣2 = 1
L6 Tr

[
R(Pi)W

µ

L,df(Pi,Pf ,L)R(Pf )W
µ

L,df(Pf ,Pi,L)
]
, (3.4)

where the left-hand side is the finite-volume matrix element. The right-hand side involves a trace
over the different possible angular momenta and the quantity R is a generalization of the Lellouch-
Lüscher factor [1, 13, 20, 21].

Finally, WL,df is related to the infinite-volume 2+ J→ 2 amplitude through

W µ

L,df(Pf ,Pi,L)−W µ

df (si,s f ,Q2)≡ fπ+(Q2)M (s f )
[
(Pf +Pi)

µG(Pf ,Pi,L)−2Gµ(Pf ,Pi,L)
]
M (si) ,

(3.5)
where si ≡ P2

i , s f ≡ P2
f , M is the P-wave scattering amplitude, Q2 = −(Pf −Pi)

2, fπ+(Q2) is the
electromagnetic form factor the of the π+, G and Gµ are new kinematic functions.3 In writing
Eq. (3.5) we have suppressed indices associated the angular momenta of the initial and final states.
As an example, we provide an explicit expression for Gµ when the initial and final states have zero
total angular momenta,

Gµ(Pf ,Pi,L) = lim
α→0

[ 1
L3 ∑

k
−
ˆ

d3k
(2π)3

] H(α,k)
2
√

k2 +m2

kµ

(Pf − k)2−m2 + iε
1

(Pi− k)2−m2 + iε
,

(3.6)

where k0 =
√

k2 +m2 and H(α,k) is an ultraviolet cut-off function, which is smooth in the kine-
matic window of interest, equal to one at each of the poles of the integrand, and equal to one in the
limit that α → 0. In Ref. [25] we provide explicit expressions for these functions for all angular
momenta.

3In writing this expression, we have ignored contributions form the electromagnetic form-factor of the π0, which
vanishes at Q2 = 0 but will have a small contribution for non-zero Q2.

3
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The sum appearing in Eq. (3.6) can be efficiently calculated, and we have found the integral to
be the most challenging part. In particular, standard numerical integration methods converge very
slowly due to the singular structure of the integrand. We find it convenient to write the integral as
a sum of two parts: a singular four-dimensional piece and a three-dimensional smooth piece. In
particular, it is possible to reduce the four-dimensional integral to a one-dimensional integral using
standard techniques for the evaluation of one loop diagrams with three propagators. The smooth
(and convergent) three-dimensional integral can be integrated with standard numerical routines.
For the special case in which Pi = Pf , we are able to write the kinematic functions in terms of linear
combinations of the generalized zeta-functions. We have performed various tests demonstrating
that these two procedures agree when Pi = Pf .

In Fig. 2 we plot Gµ for two volumes, when Pi = Pf , P = 2π[001]/L, and the initial and
final angular momenta are (`i,mi) = (` f ,m f ) = (1,0). Similar to the zeta-functions present in the
Lüscher formalism, these functions are divergent when the energy of the system coincides with the
free states. Unlike the zeta-functions, these have double poles.

2.0 2.5 3.0 3.5 4.0

�1

0

1

2.0 2.5 3.0 3.5 4.0
�1.0

�0.5

0.0

0.5

1.0

mL = 4 mL = 6

E?/m E?/m

µ = 0
µ = 3

5.0 ⇥ ImG

Figure 2: Gµ in units of [m]−1 as a function of the center of mass energy for the case described in the text
using two different values of the volume. The solid and dashed lines respectively correspond to the real and
imaginary parts.

4. Conclusions

In this talk we have presented a formalism for the study of 2+J→ 2 reactions via lattice QCD.
These amplitude may be used to extract structural information of bound states and resonances
coupling to two-body states. We have developed efficient techniques for evaluating a new class of
finite-volume functions that emerge in this formalism.

There are a several open challenges left to address in order to implement this framework,
and these are currently under investigation. First, the amplitudes that appear are expressed in
terms of the partial-wave basis, while the form factor of resonances/bound states are more naturally
understood using Lorentz decomposition. Second, for the special case where one is interested in
the extraction of the three electromagnetic form factors of the ρ resonance, it will be necessary
to constrain four Lorentz scalar amplitudes for real values of the energy of the initial and final
ππ states. After analytic continuation to the ρ pole, one linear combination of these amplitudes
must vanish. Third, as with the vast majority of finite-volume observables, there is not a one-
to-one mapping between matrix elements and scattering amplitudes. One possible solution here

4

Vl= J ULJU~L 
r.::::---------- r---:::..-----------------------------

1 



P
o
S
(
L
A
T
T
I
C
E
2
0
1
8
)
0
7
5

Finite-volume formalism Alessandro Baroni

is to use well-motivated parametrizations to fit a large kinematic window of the matrix elements
using Eq. (3.4). Similar techniques are currently being implemented in the analysis of coupled-
channel spectra [26, 27]. Ultimately, one would want to use amplitudes that satisfy dispersive
relations. There has been recent development on this front for closely-related amplitudes, namely
πγ → ππ [28, 29], but more work is needed to accommodate ππγ?→ ππ .
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