6,938 research outputs found

    Deconstructing the concept of 'Creative Industries'

    Get PDF
    ‘Creative industries’ and ‘cultural industries’ are terms that tend to be used interchangeably by UK policymakers. However their meanings and uses are in fact very different. In this paper we will be exploring the differences between the two and arguing that, despite how influential it has become, the creative industries definition adopted by the British government is ill conceived in relation to culture. First, it confuses or conflates culture and creativity, two quite different concepts. This is partly because of terminological confusion about the word culture, which we will look at later in more detail. Second, we argue that the UK creative industries definition is wedded to notions of the knowledge economy, within which culture is valued primarily for its economic contribution. The result is a creative industries definition that fails to take account of the importance and distinctiveness of culture – in policy terms the creative arts have been subsumed within a concept which, as we shall show, has no cultural content at all

    Beacon-referenced Mutual Pursuit in Three Dimensions

    Full text link
    Motivated by station-keeping applications in various unmanned settings, this paper introduces a steering control law for a pair of agents operating in the vicinity of a fixed beacon in a three-dimensional environment. This feedback law is a modification of the previously studied three-dimensional constant bearing (CB) pursuit law, in the sense that it incorporates an additional term to allocate attention to the beacon. We investigate the behavior of the closed-loop dynamics for a two agent mutual pursuit system in which each agent employs the beacon-referenced CB pursuit law with regards to the other agent and a stationary beacon. Under certain assumptions on the associated control parameters, we demonstrate that this problem admits circling equilibria wherein the agents move on circular orbits with a common radius, in planes perpendicular to a common axis passing through the beacon. As the common radius and distances from the beacon are determined by choice of parameters in the feedback law, this approach provides a means to engineer desired formations in a three-dimensional setting

    Station Keeping through Beacon-referenced Cyclic Pursuit

    Full text link
    This paper investigates a modification of cyclic constant bearing (CB) pursuit in a multi-agent system in which each agent pays attention to a neighbor and a beacon. The problem admits shape equilibria with collective circling about the beacon, with the circling radius and angular separation of agents determined by choice of parameters in the feedback law. Stability of circling shape equilibria is shown for a 2-agent system, and the results are demonstrated on a collective of mobile robots tracked by a motion capture system

    On the Geometry and Mass of Static, Asymptotically AdS Spacetimes, and the Uniqueness of the AdS Soliton

    Get PDF
    We prove two theorems, announced in hep-th/0108170, for static spacetimes that solve Einstein's equation with negative cosmological constant. The first is a general structure theorem for spacetimes obeying a certain convexity condition near infinity, analogous to the structure theorems of Cheeger and Gromoll for manifolds of non-negative Ricci curvature. For spacetimes with Ricci-flat conformal boundary, the convexity condition is associated with negative mass. The second theorem is a uniqueness theorem for the negative mass AdS soliton spacetime. This result lends support to the new positive mass conjecture due to Horowitz and Myers which states that the unique lowest mass solution which asymptotes to the AdS soliton is the soliton itself. This conjecture was motivated by a nonsupersymmetric version of the AdS/CFT correspondence. Our results add to the growing body of rigorous mathematical results inspired by the AdS/CFT correspondence conjecture. Our techniques exploit a special geometric feature which the universal cover of the soliton spacetime shares with familiar ``ground state'' spacetimes such as Minkowski spacetime, namely, the presence of a null line, or complete achronal null geodesic, and the totally geodesic null hypersurface that it determines. En route, we provide an analysis of the boundary data at conformal infinity for the Lorentzian signature static Einstein equations, in the spirit of the Fefferman-Graham analysis for the Riemannian signature case. This leads us to generalize to arbitrary dimension a mass definition for static asymptotically AdS spacetimes given by Chru\'sciel and Simon. We prove equivalence of this mass definition with those of Ashtekar-Magnon and Hawking-Horowitz.Comment: Accepted version, Commun Math Phys; Added Remark IV.3 and supporting material dealing with non-uniqueness arising from choice of special cycle on the boundary at infinity; 2 new citations added; LaTeX 27 page

    A sweetspot for innovation:developing games with purpose through student-staff collaboration

    Get PDF
    Within industry as well as academia, developing games that have wider impact on society has been of particular interest in the last decade. The increasing use of terms such as ‘games with purpose’, ‘serious games’ and gamification’ has been mirrored in a flurry of activity in games research. Broader applications of games beyond entertainment are now well-understood and accepted, with universities and companies excelling in creating games to serve particular needs. However, it is not explicitly clear how undergraduates of game design and development courses can be directly involved in serious game creation. With most undergraduates inspired by commercial games development, and the games industry requiring that universities teach specific technical skills in their courses, balancing the research aspirations of academics with the educational requirements of an appropriate undergraduate course can be a difficult balancing act. In this paper, the authors present three case studies of games with purpose developed through collaboration between undergraduate students and academic staff. In all cases, the educational value of the projects for the students is considered in relation to the research value for the academics, who face increasing demands to develop research outcomes despite a necessity to provide a first-rate learning experience and nurture future game developers

    Singularity theorems and the Lorentzian splitting theorem for the Bakry-Emery-Ricci tensor

    Get PDF
    We consider the Hawking-Penrose singularity theorems and the Lorentzian splitting theorem under the weaker curvature condition of nonnegative Bakry-Emery-Ricci curvature RicfmRic_f^m in timelike directions. We prove that they still hold when mm is finite, and when mm is infinite, they hold under the additional assumption that ff is bounded from above.Comment: Correction to one of the example

    The Cosmic Censor Forbids Naked Topology

    Get PDF
    For any asymptotically flat spacetime with a suitable causal structure obeying (a weak form of) Penrose's cosmic censorship conjecture and satisfying conditions guaranteeing focusing of complete null geodesics, we prove that active topological censorship holds. We do not assume global hyperbolicity, and therefore make no use of Cauchy surfaces and their topology. Instead, we replace this with two underlying assumptions concerning the causal structure: that no compact set can signal to arbitrarily small neighbourhoods of spatial infinity (``i0i^0-avoidance''), and that no future incomplete null geodesic is visible from future null infinity. We show that these and the focusing condition together imply that the domain of outer communications is simply connected. Furthermore, we prove lemmas which have as a consequence that if a future incomplete null geodesic were visible from infinity, then given our i0i^0-avoidance assumption, it would also be visible from points of spacetime that can communicate with infinity, and so would signify a true naked singularity.Comment: To appear in CQG, this improved version contains minor revisions to incorporate referee's suggestions. Two revised references. Plain TeX, 12 page

    Rigid Singularity Theorem in Globally Hyperbolic Spacetimes

    Get PDF
    We show the rigid singularity theorem, that is, a globally hyperbolic spacetime satisfying the strong energy condition and containing past trapped sets, either is timelike geodesically incomplete or splits isometrically as space ×\times time. This result is related to Yau's Lorentzian splitting conjecture.Comment: 3 pages, uses revtex.sty, to appear in Physical Review
    corecore