532 research outputs found

    Ronchi test applied to measurement of surface roughness

    Get PDF
    Ronchi test is applied to measure microscopic variations in surface roughness or flatness of metallized test specimens. Light is projected through a diffraction grating onto the test specimen, and the light reflected from the specimen is viewed or photographed through the grating

    Metallized Film Capacitor Lifetime Evaluation and Failure Mode Analysis

    Full text link
    One of the main concerns for power electronic engineers regarding capacitors is to predict their remaining lifetime in order to anticipate costly failures or system unavailability. This may be achieved using a Weibull statistical law combined with acceleration factors for the temperature, the voltage, and the humidity. This paper discusses the different capacitor failure modes and their effects and consequences.Comment: 12 pages, contribution to the 2014 CAS - CERN Accelerator School: Power Converters, Baden, Switzerland, 7-14 May 201

    Three-dimensional stability of Burgers vortices

    Full text link
    Burgers vortices are explicit stationary solutions of the Navier-Stokes equations which are often used to describe the vortex tubes observed in numerical simulations of three-dimensional turbulence. In this model, the velocity field is a two-dimensional perturbation of a linear straining flow with axial symmetry. The only free parameter is the Reynolds number Re=Γ/νRe = \Gamma/\nu, where Γ\Gamma is the total circulation of the vortex and ν\nu is the kinematic viscosity. The purpose of this paper is to show that Burgers vortex is asymptotically stable with respect to general three-dimensional perturbations, for all values of the Reynolds number. This definitive result subsumes earlier studies by various authors, which were either restricted to small Reynolds numbers or to two-dimensional perturbations. Our proof relies on the crucial observation that the linearized operator at Burgers vortex has a simple and very specific dependence upon the axial variable. This allows to reduce the full linearized equations to a vectorial two-dimensional problem, which can be treated using an extension of the techniques developped in earlier works. Although Burgers vortices are found to be stable for all Reynolds numbers, the proof indicates that perturbations may undergo an important transient amplification if ReRe is large, a phenomenon that was indeed observed in numerical simulations.Comment: 31 pages, no figur

    Carbon based double layer capacitors with aprotic electrolyte solutions: the possible role of intercalation/insertion processes

    Get PDF
    The extraordinary stability and cycle life performance of today's electrochemical double-layer capacitors (EDLCs) are generally ascribed to the fact that charge storage in activated carbon (AC) is based on pure double-layer charging. In contrast, Faradaic charge-transfer reactions like those occurring in batteries are often connected with dimensional changes, which can affect the cycle life of these storage devices. Here we report the charge-induced height change of an AC electrode in an aprotic electrolyte solution, 1mol/l (C2H5)4NBF4 (TEABF4) in acetonitrile. The results are compared with those obtained for a graphite electrode in the same electrolyte. For both electrodes, we observe an expansion/contraction of several percent for a potential window of ±2V vs. the immersion potential (ip). For the EDLC electrode, significant expansion starts at about 1V remote from the ip and hence is well within the normal EDLC operation range. For the graphite electrode, the height changes are unambiguously caused by intercalation/deintercalation of both anions and cations. The close analogies between the graphite and the EDLC electrode suggest that ion intercalation or insertion processes might play a major role for charge storage, self discharge, cyclability, and the voltage limitation of EDLC

    Analysis of enhanced diffusion in Taylor dispersion via a model problem

    Full text link
    We consider a simple model of the evolution of the concentration of a tracer, subject to a background shear flow by a fluid with viscosity ν1\nu \ll 1 in an infinite channel. Taylor observed in the 1950's that, in such a setting, the tracer diffuses at a rate proportional to 1/ν1/\nu, rather than the expected rate proportional to ν\nu. We provide a mathematical explanation for this enhanced diffusion using a combination of Fourier analysis and center manifold theory. More precisely, we show that, while the high modes of the concentration decay exponentially, the low modes decay algebraically, but at an enhanced rate. Moreover, the behavior of the low modes is governed by finite-dimensional dynamics on an appropriate center manifold, which corresponds exactly to diffusion by a fluid with viscosity proportional to 1/ν1/\nu

    Interaction of vortices in viscous planar flows

    Full text link
    We consider the inviscid limit for the two-dimensional incompressible Navier-Stokes equation in the particular case where the initial flow is a finite collection of point vortices. We suppose that the initial positions and the circulations of the vortices do not depend on the viscosity parameter \nu, and we choose a time T > 0 such that the Helmholtz-Kirchhoff point vortex system is well-posed on the interval [0,T]. Under these assumptions, we prove that the solution of the Navier-Stokes equation converges, as \nu -> 0, to a superposition of Lamb-Oseen vortices whose centers evolve according to a viscous regularization of the point vortex system. Convergence holds uniformly in time, in a strong topology which allows to give an accurate description of the asymptotic profile of each individual vortex. In particular, we compute to leading order the deformations of the vortices due to mutual interactions. This allows to estimate the self-interactions, which play an important role in the convergence proof.Comment: 39 pages, 1 figur

    Phase Slips and the Eckhaus Instability

    Full text link
    We consider the Ginzburg-Landau equation, tu=x2u+uuu2 \partial_t u= \partial_x^2 u + u - u|u|^2 , with complex amplitude u(x,t)u(x,t). We first analyze the phenomenon of phase slips as a consequence of the {\it local} shape of uu. We next prove a {\it global} theorem about evolution from an Eckhaus unstable state, all the way to the limiting stable finite state, for periodic perturbations of Eckhaus unstable periodic initial data. Equipped with these results, we proceed to prove the corresponding phenomena for the fourth order Swift-Hohenberg equation, of which the Ginzburg-Landau equation is the amplitude approximation. This sheds light on how one should deal with local and global aspects of phase slips for this and many other similar systems.Comment: 22 pages, Postscript, A

    Orbital stability: analysis meets geometry

    Get PDF
    We present an introduction to the orbital stability of relative equilibria of Hamiltonian dynamical systems on (finite and infinite dimensional) Banach spaces. A convenient formulation of the theory of Hamiltonian dynamics with symmetry and the corresponding momentum maps is proposed that allows us to highlight the interplay between (symplectic) geometry and (functional) analysis in the proofs of orbital stability of relative equilibria via the so-called energy-momentum method. The theory is illustrated with examples from finite dimensional systems, as well as from Hamiltonian PDE's, such as solitons, standing and plane waves for the nonlinear Schr{\"o}dinger equation, for the wave equation, and for the Manakov system

    Coherent vortex structures and 3D enstrophy cascade

    Full text link
    Existence of 2D enstrophy cascade in a suitable mathematical setting, and under suitable conditions compatible with 2D turbulence phenomenology, is known both in the Fourier and in the physical scales. The goal of this paper is to show that the same geometric condition preventing the formation of singularities - 1/2-H\"older coherence of the vorticity direction - coupled with a suitable condition on a modified Kraichnan scale, and under a certain modulation assumption on evolution of the vorticity, leads to existence of 3D enstrophy cascade in physical scales of the flow.Comment: 15 pp; final version -- to appear in CM

    Human papillomavirus (HPV) contamination of gynaecological equipment.

    Get PDF
    OBJECTIVE: The gynaecological environment can become contaminated by human papillomavirus (HPV) from healthcare workers' hands and gloves. This study aimed to assess the presence of HPV on frequently used equipment in gynaecological practice. METHODS: In this cross-sectional study, 179 samples were taken from fomites (glove box, lamp of a gynaecological chair, gel tubes for ultrasound, colposcope and speculum) in two university hospitals and in four gynaecological private practices. Samples were collected with phosphate-buffered saline-humidified polyester swabs according to a standardised pattern, and conducted twice per day for 2 days. The samples were analysed by a semiquantitative real-time PCR. Statistical analysis was performed using Pearson's χ(2) test and multivariate regression analysis. RESULTS: Thirty-two (18%) HPV-positive samples were found. When centres were compared, there was a higher risk of HPV contamination in gynaecological private practices compared with hospitals (OR 2.69, 95% CI 1.06 to 6.86). Overall, there was no difference in the risk of contamination with respect to the time of day (OR 1.79, 95% CI 0.68 to 4.69). When objects were compared, the colposcope had the highest risk of contamination (OR 3.02, 95% CI 0.86 to 10.57). CONCLUSIONS: Gynaecological equipment and surfaces are contaminated by HPV despite routine cleaning. While there is no evidence that contaminated surfaces carry infectious viruses, our results demonstrate the need for strategies to prevent HPV contamination. These strategies, based on health providers' education, should lead to well-established cleaning protocols, adapted to gynaecological rooms, aimed at eliminating HPV material
    corecore