145 research outputs found

    Effects of Mediterranean diet and weight loss on blood-lipid profile in overweight adults with hypercholesterolemia

    Get PDF
    Blood cholesterol has been positively associated with increased cardiovascular risk as a modifiable risk factors together with the lifestyle and diet. Furthermore, an improvement of the blood-lipid profile seems to be able to produce a decrease in cardiovascular events. Cholesterol plasma levels are related to the body mass index (BMI) and are affected by diet. The aim of this study was to evaluate the effectiveness of a Mediterranean diet (MD) weight-loss programme to improve blood cholesterol profiles in overweight adults subjected to real-world outpatient diet. Forty-nine hypercholesteraemic, overweight adults of both sexes were subjected to a dietary weight-loss intervention. Patients were prescribed a slightly hypocaloric MD for 16 weeks, followed by an 8-week follow-up period with a normocaloric diet. Data showed significant weight loss and cholesterol blood profile improvement both under the hypocaloric diet and during the follow-up period. In particular, the decrease in both Total and LDL-cholesterol was greater than their critical differences indicating the clinical relevance of blood lipid improvement induced by MD

    An in vitro comparative study of the antioxidant activity and SIRT1 modulation of natural compounds

    Get PDF
    Oxidative stress arises from an imbalance between the production of free radicals and antioxidant defences. Several studies have suggested that dietary antioxidants (such as polyphenols and berberine) may counteract oxidative stress through the involvement of the Sirtuin 1/Adenosine Monophosphate-Activated Protein Kinase (SIRT1/AMPK) pathway. The aim of this study was to evaluate the direct and specific antioxidant activity of some natural compounds, as well as their ability to modulate the expression of SIRT1 and the activation of AMPK. Quercetin, tyrosol, ferulic acid, catechin, berberine and curcumin were evaluated for their specific and direct antioxidant activity with TOSC assay. Their ability to modulate SIRT1 and AMPK was assessed by immunoblotting assay, while their cytotoxicity by CellTiter-Blue Cell Viability Assay. No statistically significant decrease (p > 0.05) in the number of viable cells was found upon challenging with the natural compounds. Quercetin exhibited the highest antioxidant activity against peroxyl radical and peroxinitrate derivates, while curcumin showed the best anti-hydroxyl activity with respect to the other compounds and, most importantly, respect to the reference antioxidants. Finally, all the tested compounds significantly increased the SIRT1 expression and the activation of AMPK. Our results clearly disclose the specific antioxidant activity of these natural compounds and their ability to increase SIRT1 expression and AMPK activation

    Regular physical exercise prevents nitrosative stress caused by ageing in elderly athletes

    Get PDF
    Ageing is associated with an increased susceptibility to free radical-induced tissue damage. One of the most important classes of free radicals generated in living systems is represented by reactive nitrogen species (RNS), responsible for the so-called nitrosative stress. It has been shown that physical activity is able to induce up-regulation of antioxidant systems contributing to prevent oxidative stress. The aim of the present study was to assess whether regular physical activity is able to counteract age-induced nitrosative stress. Thirty male endurance athletes (average age 70.8 ± 6.1 years, VO2max 59.07 ± 8.5 ml/kg/min) and thirty age-sex-matched sedentary controls ( average age 71.5 ± 4.3 years, VO2max 25.6 ± 8.2 ml/kg/min) were studied. Plasma free radicals antioxidant capacity against peroxynitrite, one of the most important RNS, was evaluated as Total Oxyradical Scavenging Capacity (TOSC) units. Results. Plasma TOSC values against peroxynitrite were higher in athletes than in sedentary controls (22.94 ± 1.85 vs 15.41 ± 1.24 units/ml, p < 0.001). In the athletes group, TOSC values were related to VO2max (r = 0.44, p < 0.05). In conclusion, these results suggest that regular physical activity is associated with increased antioxidant defences in elderly athletes. In athletes, a direct correlation between the scavenger scavenger of the plasma and the VO2max (r = 0.44, p <0.05) was also observed. These results confirm that regular physical activity practised for many years can determine the best response to nitrosative stress induced by peroxynitrite

    How skill expertise shapes the brain functional architecture: an fMRI study of visuo-spatial and motor processing in professional racing-car and naïve drivers

    Get PDF
    The present study was designed to investigate the brain functional architecture that subserves visuo-spatial and motor processing in highly skilled individuals. By using functional magnetic resonance imaging (fMRI), we measured brain activity while eleven Formula racing-car drivers and eleven ‘naïve’ volunteers performed a motor reaction and a visuo-spatial task. Tasks were set at a relatively low level of difficulty such to ensure a similar performance in the two groups and thus avoid any potential confounding effects on brain activity due to discrepancies in task execution. The brain functional organization was analyzed in terms of regional brain response, inter-regional interactions and blood oxygen level dependent (BOLD) signal variability. While performance levels were equal in the two groups, as compared to naïve drivers, professional drivers showed a smaller volume recruitment of task-related regions, stronger connections among task-related areas, and an increased information integration as reflected by a higher signal temporal variability. In conclusion, our results demonstrate that, as compared to naïve subjects, the brain functional architecture sustaining visuo-motor processing in professional racing-car drivers, trained to perform at the highest levels under extremely demanding conditions, undergoes both ‘quantitative’ and ‘qualitative’ modifications that are evident even when the brain is engaged in relatively simple, non-demanding tasks. These results provide novel evidence in favor of an increased ‘neural efficiency’ in the brain of highly skilled individuals

    It’s not all in your car: functional and structural correlates of exceptional driving skills in professional racers

    Get PDF
    Driving is a complex behavior that requires the integration of multiple cognitive functions. While many studies have investigated brain activity related to driving simulation under distinct conditions, little is known about the brain morphological and functional architecture in professional competitive driving, which requires exceptional motor and navigational skills. Here, 11 professional racing-car drivers and 11 “naïve” volunteers underwent both structural and functional brain magnetic resonance imaging (MRI) scans. Subjects were presented with short movies depicting a Formula One car racing in four different official circuits. Brain activity was assessed in terms of regional response, using an Inter-Subject Correlation (ISC) approach, and regional interactions by mean of functional connectivity. In addition, voxel-based morphometry (VBM) was used to identify specific structural differences between the two groups and potential interactions with functional differences detected by the ISC analysis. Relative to non-experienced drivers, professional drivers showed a more consistent recruitment of motor control and spatial navigation devoted areas, including premotor/motor cortex, striatum, anterior, and posterior cingulate cortex and retrosplenial cortex, precuneus, middle temporal cortex, and parahippocampus. Moreover, some of these brain regions, including the retrosplenial cortex, also had an increased gray matter density in professional car drivers. Furthermore, the retrosplenial cortex, which has been previously associated with the storage of observer-independent spatial maps, revealed a specific correlation with the individual driver's success in official competitions. These findings indicate that the brain functional and structural organization in highly trained racing-car drivers differs from that of subjects with an ordinary driving experience, suggesting that specific anatomo-functional changes may subtend the attainment of exceptional driving performance

    It's not all in your car: functional and structural correlates of exceptional driving skills in professional racers.

    Get PDF
    Driving is a complex behavior that requires the integration of multiple cognitive functions. While many studies have investigated brain activity related to driving simulation under distinct conditions, little is known about the brain morphological and functional architecture in professional competitive driving, which requires exceptional motor and navigational skills. Here, 11 professional racing-car drivers and 11 "naïve" volunteers underwent both structural and functional brain magnetic resonance imaging (MRI) scans. Subjects were presented with short movies depicting a Formula One car racing in four different official circuits. Brain activity was assessed in terms of regional response, using an Inter-Subject Correlation (ISC) approach, and regional interactions by mean of functional connectivity. In addition, voxel-based morphometry (VBM) was used to identify specific structural differences between the two groups and potential interactions with functional differences detected by the ISC analysis. Relative to non-experienced drivers, professional drivers showed a more consistent recruitment of motor control and spatial navigation devoted areas, including premotor/motor cortex, striatum, anterior, and posterior cingulate cortex and retrosplenial cortex, precuneus, middle temporal cortex, and parahippocampus. Moreover, some of these brain regions, including the retrosplenial cortex, also had an increased gray matter density in professional car drivers. Furthermore, the retrosplenial cortex, which has been previously associated with the storage of observer-independent spatial maps, revealed a specific correlation with the individual driver's success in official competitions. These findings indicate that the brain functional and structural organization in highly trained racing-car drivers differs from that of subjects with an ordinary driving experience, suggesting that specific anatomo-functional changes may subtend the attainment of exceptional driving performance

    α-Synuclein Aggregates with β-Amyloid or Tau in Human Red Blood Cells: Correlation with Antioxidant Capability and Physical Exercise in Human Healthy Subjects

    Get PDF
    Neurodegenerative disorders (NDs) are characterized by abnormal accumulation/misfolding of specific proteins, primarily α-synuclein (α-syn), β-amyloid1–42 (Aβ), and tau, in both brain and peripheral tissue. In addition to homo-oligomers, the role of α-syn interactions with Aβ or tau has gradually emerged. The altered protein accumulation has been related to both oxidative stress and physical activity; nevertheless, no correlation among the presence of peripheral α-syn hetero-aggregates, antioxidant capacity, and physical exercise has been discovered as of yet. Herein, the content of α-syn, Aβ, tau, and of their heterocomplexes was determined in red blood cells (RBCs) of healthy subjects (sedentary and athletes). Such parameters were related to the extent of the antioxidant capability (AOC), a key marker of oxidative stress in aging-related pathologies, and to physical exercise, which is known to play an important preventive role in NDs and to modulate oxidative stress. Tau content and plasma AOC toward hydroxyl radicals were both reduced in older or sedentary subjects; in contrast, α-syn and Aβ accumulated in elderly subjects and showed an inverse correlation with both hydroxyl AOC and the level of physical activity. For the first time, α-syn heterocomplexes with Aβ or tau were quantified and demonstrated to be inversely related to hydroxyl AOC. Furthermore, α-syn/Aβ aggregates were significantly reduced in athletes and inversely correlated with physical activity level, independent of age. The positive correlation between antioxidant capability/physical activity and reduced protein accumulation was confirmed by these data and suggested that peripheral α-syn heterocomplexes may represent new indicators of ND-related protein misfolding

    Association of kidney disease measures with risk of renal function worsening in patients with type 1 diabetes

    Get PDF
    Background: Albuminuria has been classically considered a marker of kidney damage progression in diabetic patients and it is routinely assessed to monitor kidney function. However, the role of a mild GFR reduction on the development of stage 653 CKD has been less explored in type 1 diabetes mellitus (T1DM) patients. Aim of the present study was to evaluate the prognostic role of kidney disease measures, namely albuminuria and reduced GFR, on the development of stage 653 CKD in a large cohort of patients affected by T1DM. Methods: A total of 4284 patients affected by T1DM followed-up at 76 diabetes centers participating to the Italian Association of Clinical Diabetologists (Associazione Medici Diabetologi, AMD) initiative constitutes the study population. Urinary albumin excretion (ACR) and estimated GFR (eGFR) were retrieved and analyzed. The incidence of stage 653 CKD (eGFR &lt; 60 mL/min/1.73 m2) or eGFR reduction &gt; 30% from baseline was evaluated. Results: The mean estimated GFR was 98 \ub1 17 mL/min/1.73m2 and the proportion of patients with albuminuria was 15.3% (n = 654) at baseline. About 8% (n = 337) of patients developed one of the two renal endpoints during the 4-year follow-up period. Age, albuminuria (micro or macro) and baseline eGFR &lt; 90 ml/min/m2 were independent risk factors for stage 653 CKD and renal function worsening. When compared to patients with eGFR &gt; 90 ml/min/1.73m2 and normoalbuminuria, those with albuminuria at baseline had a 1.69 greater risk of reaching stage 3 CKD, while patients with mild eGFR reduction (i.e. eGFR between 90 and 60 mL/min/1.73 m2) show a 3.81 greater risk that rose to 8.24 for those patients with albuminuria and mild eGFR reduction at baseline. Conclusions: Albuminuria and eGFR reduction represent independent risk factors for incident stage 653 CKD in T1DM patients. The simultaneous occurrence of reduced eGFR and albuminuria have a synergistic effect on renal function worsening

    CIRCADIAN CHANGES OF AMBULATORY BLOOD-PRESSURE IN AN UNSELECTED POPULATION

    No full text
    Ambulatory blood pressure monitoring does not interfere with the night-time blood pressure and heart rate reduction, typical haemodynamic effects of sleep. An unselected population of 186 subjects was split into quartiles by age to assess the age related changes in 24-h blood pressure profile. From ambulatory blood pressure monitoring data we calculated daytime and night-time blood pressure and heart rate average values, as well as their percent difference. Results show that there is no difference with regard to nocturnal heart rate reduction (on average, 15%) between age groups or sexes, whereas nocturnal blood pressure reduction (on average, 10%) is significantly lower in elderly males, but not females, when compared with young people, This flat 24-h blood pressure profile is associated with hypertension. Circadian changes of ambulatory blood pressure are very different in elderly hypertensive men and provide a marker of diffuse arterial damage
    corecore