14 research outputs found

    Application of FPGA-based Lock-in amplifier for ultrasound propagation measurements using the pulse-echo technique

    Full text link
    We describe application of a state-of-the art digital FPGA based Lock-In amplifier to measurements of ultrasound propagation and attenuation at fixed frequency in low temperatures and in high static magnetic fields. Our implementation significantly simplifies electronics required for high resolution measurements, allows to record the full echo train in single measurement and extract changes in both phase and amplitude of an arbitrary number of echa as a function of an external control parameter. The system is simple in operation requiring very little prior knowledge of electrical engineering and can bring the technique to a broad range of solid state physics laboratories. We have tested our setup measuring the magneto-acoustic quantum oscillations in the Weyl semimetal NbP. The results are directly compared with previous results obtained using standard instrumentation

    Field induced density wave in the heavy fermion compound CeRhIn5

    Full text link
    Metals containing Ce often show strong electron correlations due to the proximity of the 4f state to the Fermi energy, leading to strong coupling with the conduction electrons. This coupling typically induces a variety of competing ground states, including heavy-fermion metals, magnetism and unconventional superconductivity. The d-wave superconductivity in CeTMIn5 (TM=Co, Rh, Ir) has attracted significant interest due to its qualitative similarity to the cuprate high-Tc superconductors. Here, we show evidence for a field induced phase-transition to a state akin to a density-wave (DW) in the heavy fermion CeRhIn5, existing in proximity to its unconventional superconductivity. The DW state is signaled by a hysteretic anomaly in the in-plane resistivity accompanied by the appearance of non-linear electrical transport at high magnetic fields (>27T), which are the distinctive characteristics of density-wave states. The unusually large hysteresis enables us to directly investigate the Fermi surface of a supercooled electronic system and to clearly associate a Fermi surface reconstruction with the transition. Key to our observation is the fabrication of single crystal microstructures, which are found to be highly sensitive to "subtle" phase transitions involving only small portions of the Fermi surface. Such subtle order might be a common feature among correlated electron systems, and its clear observation adds a new perspective on the similarly subtle CDW state in the cuprates.Comment: Accepted in Nature Communication

    Crystallization kinetics of polymer fibrous nanocomposites

    Get PDF
    Through applying both a probabilistic approach and a combination of probabilistic and the Avrami ‘extended volume’ approaches we have derived a theory of overall crystallization kinetics of polymers reinforced with nanofibers. The theory describes the crystallization kinetics in the presence of straight or curved nanofibers, with different nucleation ability and orientation, and allows to account for their variable length. The analytic results are supported by computer simulations of spherulitic structures. The derived mathematical formulas are in exponential forms suggesting the use of the Avrami logarithmic coordinates for detailed analysis of experimental data. Experimental data on crystallization of several nanocomposites, including polypropylene reinforced with poly(tetrafluoroethylene) nanofibers and polyamide 12 with carbon nanotubes, are in a good agreement with the theoretical predictions

    Three-dimensional quasi-quantized Hall effect in bulk InAs

    Full text link
    The quasi-quantized Hall effect (QQHE) is the three-dimensional (3D) counterpart of the integer quantum Hall effect(QHE),exhibited only by two-dimensional (2D) electron systems. It has recently been observed in layered materials, consisting of stacks of weakly coupled 2D platelets. Yet, it is predicted that the quasi-quantized 3D version of the 2D QHE occurs in a much broader class of bulk materials, regardless of the underlying crystal structure. Here, we report the observation of quasi-quantized plateau-like features in the Hall conductivity of the n-type bulk semiconductor InAs. InAs takes form of a cubic crystal without any low-dimensional substructure. The onset of the plateau-like feature in the Hall conductivity scales with 2/3kFz/π\sqrt{2/3}k_{F}^{z}/\pi in units of the conductance quantum and is accompanied by a Shubnikov-de Haas minimum in the longitudinal resistivity, consistent with the predictions for 3D QQHE for parabolic electron band structures. Our results suggest that the 3D QQHE may be a generic effect directly observable in materials with small Fermi surfaces, placed in sufficiently strong magnetic fields

    Strong anisotropy of electron-phonon interaction in NbP probed by magnetoacoustic quantum oscillations

    Get PDF
    In this study, we report on the observation of de Haas-van Alphen-type quantum oscillations (QO) in the ultrasound velocity of NbP as well as `giant QO' in the ultrasound attenuation in pulsed magnetic fields. The difference of the QO amplitude for different acoustic modes reveals a strong anisotropy of the effective deformation potential, which we estimate to be as high as 9eV9\,\mathrm{eV} for certain parts of the Fermi surface. Furthermore, the natural filtering of QO frequencies and the tracing of the individual Landau levels to the quantum limit allows for a more detailed investigation of the Fermi surface of NbP as was previously achieved by means of analyzing QO observed in magnetization or electrical resistivity.Comment: 5 figure

    Anisotropic electrical and thermal magnetotransport in the magnetic semimetal GdPtBi

    Full text link
    The half-Heusler rare-earth intermetallic GdPtBi has recently gained attention due to peculiar magnetotransport phenomena that have been associated with the possible existence of Weyl fermions, thought to arise from the crossings of spin-split conduction and valence bands. On the other hand, similar magnetotransport phenomena observed in other rare-earth intermetallics have often been attributed to the interaction of itinerant carriers with localized magnetic moments stemming from the 4f4f-shell of the rare-earth element. In order to address the origin of the magnetotransport phenomena in GdPtBi, we performed a comprehensive study of the magnetization, electrical and thermal magnetoresistivity on two single-crystalline GdPtBi samples. In addition, we performed an analysis of the Fermi surface via Shubnikov-de Haas oscillations in one of the samples and compared the results to \emph{ab initio} band structure calculations. Our findings indicate that the electrical and thermal magnetotransport in GdPtBi cannot be solely explained by Weyl physics and is strongly influenced by the interaction of both itinerant charge carriers and phonons with localized magnetic Gd-ions and possibly also paramagnetic impurities.Comment: 11 figure

    Field-induced density wave in the heavy-fermion compound CeRhIn5

    Get PDF
    Strong electron correlations lead to a variety of distinct ground states, such as magnetism, charge order or superconductivity. Understanding the competitive or cooperative interplay between neighbouring phases is an outstanding challenge in physics. CeRhIn5 is a prototypical example of a heavy-fermion superconductor: it orders anti-ferromagnetically below 3.8 K, and moderate hydrostatic pressure suppresses the anti-ferromagnetic order inducing unconventional superconductivity. Here we show evidence for a phase transition to a state akin to a density wave (DW) under high magnetic fields (>27 T) in high-quality single crystal microstructures of CeRhIn5. The DW is signalled by a hysteretic anomaly in the in-plane resistivity accompanied by non-linear electrical transport, yet remarkably thermodynamic measurements suggest that the phase transition involves only small portions of the Fermi surface. Such a subtle order might be a common feature among correlated electron systems, reminiscent of the similarly subtle charge DW state in the cuprates

    Origin of the quasi-quantized Hall effect in ZrTe5

    Get PDF
    The quantum Hall effect (QHE) is traditionally considered a purely two-dimensional (2D) phenomenon. Recently, a three-dimensional (3D) version of the QHE has been reported in the Dirac semimetal ZrTe5. It was proposed to arise from a magnetic-field-driven Fermi surface instability, transforming the original 3D electron system into a stack of 2D sheets. Here, we report thermodynamic, thermoelectric and charge transport measurements on ZrTe5 in the quantum Hall regime. The measured thermodynamic properties: magnetization and ultrasound propagation, show no signatures of a Fermi surface instability, consistent with in-field single crystal X-ray diffraction. Instead, a direct comparison of the experimental data with linear response calculations based on an effective 3D Dirac Hamiltonian suggests that the quasi-quantization of the observed Hall response is an intrinsic property of the 3D electronic structure. Our findings render the Hall effect in ZrTe5 a truly 3D counterpart of the QHE in 2D systems
    corecore