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In this study, we report on the observation of de Haas–van Alphen–type quantum oscillations (QOs) in the
ultrasound velocity of NbP as well as “giant QOs” in the ultrasound attenuation in pulsed magnetic fields.
The difference in the QO amplitude for different acoustic modes reveals a strong anisotropy of the effective
deformation potential, which we estimate to be as high as 9 eV for certain parts of the Fermi surface. Furthermore,
the natural filtering of QO frequencies and the tracing of the individual Landau levels to the quantum limit allows
for a more detailed investigation of the Fermi surface of NbP, as was previously achieved by means of analyzing
QOs observed in magnetization or electrical resistivity.
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I. INTRODUCTION

Probing the propagation of ultrasound in the quantum
regime of electrons yields detailed information on the nature
of electron-phonon interactions. The ultrasound velocity in
such a regime exhibits quantum oscillations (QOs), which
can be understood both from a thermodynamic argument [1,2]
and from a self-consistent treatment of ultrasound propagation
as a stream of acoustic phonons interacting with an electron
gas that is quantized into Landau levels (LLs) [3–6]. Both
approaches yield the same result, namely, the amplitude of the
QOs being dependent on the (effective) deformation potential
�k

i = dEk/dεi, which is a measure of the change in energy
Ek of an electronic band k at a given strain εi. The connec-
tion to the microscopic picture can be understood intuitively
by recalling that the probability for an electron in the kth
band to be scattered by a phonon-mode corresponding to
εi is proportional to (�k

i )2 [3–9]. Employing measurements
of magnetoacoustic QOs, the deformation potential and its
anisotropy have been experimentally determined for many
metals and semimetals (see, for example, Refs. [3,9–14]).

Recently, the semimetallic transition-metal monopnictide
NbP has been of great interest, mainly due to its symmetry-
protected crossings of conduction and valence bands which
potentially host Weyl fermions [15–17]. It exhibits a very
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small and highly anisotropic Fermi surface, consisting of in-
tercalated spin-split pairs of electron and hole pockets due to
spin-orbit coupling [18]. The small Fermi surface gives rise to
pronounced QOs of relatively low frequencies, which have so
far been observed in magnetization [18–20], electrical resis-
tivity [21–24], Hall resistivity [21,23], thermal conductivity
[19], thermopower [19], and heat capacity [19]. The super-
position of QOs originating from different extremal Fermi-
surface orbits yields a rich Fourier spectrum, especially when
H is aligned along the c axis of the tetragonal lattice and the
extremal orbits are the smallest. The peaks in the Fourier spec-
tra could be assigned to orbits via comparison of experimental
data to ab initio density functional theory (DFT) calculations
[18], however, ambiguities due to the limited resolution and
the broadness of the Fourier peaks remained. In a recent
study by some of the authors [23], the evolution of the Fermi
surface upon direct application of uniaxial stress along the a
axis has been probed by means of Shubnikov–de Haas (SdH)
oscillations in the electrical resistivity. These experiments
revealed a strong strain dependence of the SdH oscillations,
which, besides the additional information regarding the orbit
assignments, also render NbP a promising platform for study-
ing magnetoacoustic QOs. Furthermore, the strong anisotropy
of the Fermi surface is suggestive of a highly anisotropic
electron-phonon interaction as well, which can be most con-
veniently investigated via ultrasonic measurements.

In this paper, we report on the measurements of QOs in
the ultrasound velocity and attenuation in a NbP single crystal
in pulsed magnetic fields H ‖ c (or [001]). We have investi-
gated the acoustic modes (u ‖ q ‖ [100]), (u ‖ q ‖ [001]), (u ‖
[001], q ‖ [100]), (u ‖ [010], q ‖ [100]), and (u ‖ [11̄0], q ‖
[110]) corresponding to the elastic moduli C11, C33, C44, C66,
and (C11 − C12)/2 (using Voigt notation). Here, u is the dis-
placement vector, and q is the direction of propagation of the
acoustic wave. Significant differences of the individual QO
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amplitudes between the modes were revealed. A large signal-
to-noise ratio, the usage of pulsed magnetic fields beyond
the quantum limit, the high quality of our sample resulting
in peak-shaped QOs (the presence of higher harmonics of
the Fourier series), and the natural filtering of certain QO
frequencies due to the anisotropic electron-phonon interaction
allowed for a detailed analysis of the QO frequencies and
amplitude ratios. Thereby, the anisotropy of �k

i and partially
also the cyclotron masses, cyclotron mobilities, and phase
factors for several extremal Fermi-surface orbits were deter-
mined. The QO frequency spectrum could be analyzed via
direct assignments of the LL peaks rather than Fourier analy-
sis as in previous studies, which allowed for the assignment
of formerly elusive orbits. In addition, the extremal nature
(maximum or minimum) of the individual orbits could be
deduced from the asymmetric shape of the LL peaks.

II. METHODS

NbP has a tetragonal crystal lattice (space group I41md ,
No. 109) with the lattice parameters a = b = 3.3324(2) Å
and c = 11.13705(7) Å [25]. A single-crystalline sample of
NbP was grown using chemical vapor transport reactions;
the sample was also used in our previous work [23] for
the determination of the elastic moduli. For acoustic modes
propagating along one of the main axes, the sample was cut
accordingly to a cuboid shape of dimensions 1.92 × 1.80 ×
0.88 mm3. For the (C11 − C12)/2 mode, two cuts parallel to
the (110) plane were subsequently added. The crystal planes
were carefully polished, and two lithium niobate (LiNbO3)
transducers (Z cut for longitudinal waves and X cut for
transverse waves) were glued to opposite parallel surfaces
for excitation and detection of acoustic waves. The relative
ultrasound-velocity changes �v/v and attenuation changes
�α were measured using an ultrasound pulse-echo phase-
sensitive detection technique [9,26] in pulsed magnetic fields
up to 38 T (test pulses up to 56 T) at temperatures ranging
from 1.35 to 30 K. Excitation frequencies were varied from 27
to 100 MHz with pulse durations ranging from 50 to 200 ns.
Strain-induction coupling, i.e., the Alpher-Rubin effect [2],
may be safely neglected at the used frequencies as the large
magnetoresistance in NbP even at moderate magnetic fields
(μ0H > 1 T) prevents a strong skin effect.

III. RESULTS

The change in sound velocity �v/v and the change in
sound attenuation �α vs magnetic field at T = 1.35 K are
shown for different acoustic modes in Fig. 1. Here, �v/v

refers to the change compared to the sound velocity at zero
magnetic field v = √

Ceff/ρ, where Ceff is the effective elastic
constant governing the respective mode [27] and ρ is the mass
density (ρ = 6.52 g cm−3 for NbP [25]). �v/v shows pro-
nounced QOs with high harmonic content, whereas dominant
frequencies and the size of the oscillation amplitudes strongly
vary between the modes. Strikingly, the QO amplitude in the
C66 mode is smaller by a factor of ≈20 compared to the
other modes, where for the last few LL changes in v by more
than one part in a thousand are observed. �α exhibits QOs
with a characteristic spikelike shape, also varying in terms of
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FIG. 1. Magnetoacoustic quantum oscillations in NbP for pulsed
magnetic fields H ‖ c at T = 1.35 K for different acoustic modes.
(a) Change in the relative ultrasound velocity −�v/v versus mag-
netic field. (b) Change in ultrasound attenuation �α versus magnetic
field. The curves are shifted with respect to each other for better
visibility.

amplitude and dominant frequencies depending on the mode.
We recall that the physical mechanism responsible for the
QOs in ultrasound attenuation, which are commonly termed
“giant QOs” [1,8], is not related to the Landau tubes passing
through the extremal parts of the Fermi surface as in the de
Haas–van Alphen (dHvA)-type oscillations. Instead, spikes in
�α occur when the Landau tubes pass through the Fermi-
surface section, where the component of the Fermi velocity
parallel to q is equal to the phase velocity of sound [1,3,8,28].
This resonance condition is the reason for the spikelike shape,
as it is fulfilled only for particular values of the wave vector,
in contrast to the contribution of many wave vectors in the
dHvA-type oscillations. Notably, the resonant Fermi-surface
orbits can differ substantially from the extremal orbits, es-
pecially when q ⊥ H . Hence, the positions of the observed
spikes in �α do not necessarily coincide with the LL peaks in
�v/v.

Above 30 T, all electrons and holes are confined to their
lowest LL, and v(H ) and α(H ) exhibit a steady slope in the
investigated field (measured up to 56 T for C44) and tem-
perature range, showing no signatures for correlation-driven
charge instabilities. Such correlation-driven phase transitions,
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e.g., a charge density wave, would manifest in a slope change
in �v/v and a peak in �α [29] and have been predicted
to occur in the extreme quantum limit of Weyl semimetals
[30,31]. Notably, there have been observations of indicative
features in the extreme quantum limit in the electrical resis-
tivity and in the sound velocity and attenuation in the related
compound TaAs [32,33]. However, in the case of pristine NbP
the interaction strength presumably is too feeble to allow for
experimental access to these energy scales within our achiev-
able field and temperature range.

A. Quantum oscillations in the velocity of sound

1. Frequency analysis and orbit assignment

To analyze the QOs in the ultrasound velocity, −�v/v is
plotted against 1/H (Fig. 2). The ultrasound velocity, just like
any thermodynamic property of a material, exhibits singulari-
ties upon increasing magnetic field whenever a cyclotron orbit
corresponding to a LL is exactly equal to an extremal orbit
of the Fermi-surface sheet perpendicular to the applied H .
According to the Onsager relation [1], these singularities are
periodic in 1/H with frequency F = (h̄/2πe)Aext, where Aext

is the area enclosed by the corresponding extremal orbit, h̄
is the reduced Planck constant, and e is the electron charge.
Plotting the LL number vs 1/H , F can then be extracted using
a linear fit [see Fig. 2(g)].

For a maximum orbit, −�v/v will increase with
(1/H )−1/2 approaching a LL singularity from a lower field
and then decrease steeply once the area of the corresponding
cyclotron orbit exceeds that of the maximum orbit [28]. Ac-
cordingly, for a minimum orbit these slopes are reversed, and
the steep rise appears on the low-field side of the LL peak. If
smearing due to finite temperature and electron scattering is
sufficiently suppressed, the QOs retain a high harmonic con-
tent and approach a sawtoothlike shape. The asymmetry of the
individual LL peaks then allows for identifying whether the
corresponding peak is arising from a maximum or minimum
orbit of the Fermi surface.

Clearly, the dominant frequency of 30.89 T in C11 and C33

[also very well distinguishable in the (C11 − C12)/2 mode]
stems from a maximum orbit [most apparent for the last three
LLs; see Fig. 2(b)]. It is also the most pronounced frequency
in the SdH oscillations in magnetoresistance [Fig. 2(b) top],
whose shape resembles that of the C11 mode. As assigned
in Ref. [18] based on DFT calculations and further indicated
by comparing experimental and calculated strain dependences
[23], this frequency likely stems from the α1 orbit rather
than the γ1 orbit [hereafter, we use the same labeling for
the extremal orbits of NbP as in these Refs. [18,23]; see
Fig. 2(a)]. The α1 oscillation is much less pronounced in C44

[see Fig. 2(c)], allowing for clear identification of the 14.74-T
oscillation as a minimum orbit, assigned to β1. After having
identified the LL peaks for α1 and β1, the remaining peaks
in the high-field range might be assigned to the γ1 orbit and
possibly also the δ1 orbit [see Fig. 2(e)]. The assignment to
δ1 is rather speculative; the second peak at approximately
0.06 T−1 might also stem from the last LL of δ2. At low
fields, a 0.9-T oscillation with minimum-orbit characteristics
is visible in C44, assigned to β2 [Fig. 2(d)]. Furthermore, by
applying a low-pass Fourier filter to C11 an oscillation of

6.81 T is singled out, which was also identified in the Fourier
spectra from previous QO studies [18,22,23] and assigned to
the α2 orbit [Fig. 2(f)]. The extracted frequencies are summa-
rized in Table I. We note that we did not observe additional
QO patterns predicted to occur in Weyl semimetals when the
Fermi level is near the Weyl points [5].

2. Lifshitz-Kosevich fit

The actual shape of the QOs in �v/v can be described
by a Fourier series taking finite-temperature smearing of the
Fermi-Dirac distribution and LL broadening due to electron
scattering into account. After Lifshitz and Kosevich [1], the
oscillatory part of �v/v for a single QO frequency without
spin degeneracy holds:

ṽi j

vi j
= −1

2

(
∂F

∂εi

)(
∂F

∂ε j

)
e2V

mcCi j

(
2eH

h̄π3A′′
ext

) 1
2

×
∞∑

p=1

p− 1
2 RT RD cos

[
2π p

(
F

H
− ϕ

)
± π

4

]
, (1)

where mc denotes the effective cyclotron mass, V is the real-
space volume, A′′

ext is the curvature of the Fermi surface at the
extremal orbit, and ϕ is the phase factor. The ±π/4 phase shift
accounts for whether the orbit is maximum (−) or minimum
(+). Damping of the QOs due to thermal smearing of the
Fermi distribution is accounted for by the factor [1]

RT = λ(T )

sinh[λ(T )]
, λ(T ) = p

2π2mckBT

eh̄H
. (2)

Damping due to electron scattering is taken into account by
the Dingle damping factor [1]

RD = exp [−λ(TD)] = exp

[
−p

π

μcH

]
, (3)

where TD is the Dingle temperature and μc is the mobility of
an electron exerting cyclotron motion in an applied magnetic
field (not to be confused with the zero-field transport mobility,
which, depending on the current direction, can significantly
differ from μc in the case of a large band anisotropy [35]).
The β1, β2, and α1 oscillations were clearly distinguishable in
C44 and C33, respectively, and could be approximated using the
first 20 harmonics of Eq. (1). From fits to the QOs for different
temperatures (Fig. 3), the damping factors RD and RT could be
extracted, allowing for the determination of mc, ϕ, μc, and TD

(summarized in Table I). The fitting procedure was performed
globally for all temperatures with the shared parameters F
(fixed), mc, ϕ, and μc and an independent amplitude prefactor.
We note that the direct fitting of the naturally filtered QOs
yields a greater reliability for the mc values compared to
the analysis of Fourier spectra, as there the field-dependent
amplitude damping usually leads to a systematic underesti-
mation of mc [23,36]. Our fits yielded an effective cyclotron
mass of 0.06(1)m0 for α1 and 0.12(2)m0 for β1, which is
larger than the values extracted from Fourier analysis of dHvA
oscillations [18] [0.047(9)m0 and 0.057(7)m0]. The extracted
mc are also in better agreement with the calculated values from
Ref. [18] (0.10m0 and 0.12m0) compared to previous methods,
although this does not necessarily imply improved accuracy.
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FIG. 2. Frequency analysis of the quantum oscillations in ultrasound velocity for different modes at T = 1.35 K. (a) Projections of the
electron pockets, E1 and E2, and the hole pockets, H1 and H2, of NbP parallel to the kx-kz plane (or, similarly, to the ky-kz plane due to the
fourfold rotational symmetry). Extremal orbits for H ‖ c are shown in red. For an illustration of the full Fermi surface in the first Brillouin
zone see, for instance, Refs. [23,34]. (b) Top: Shubnikov–de Haas oscillations subtracted from the magnetoelectrical resistivity ρxx at T = 2 K
for comparison. Bottom: Landau level peaks assigned to the maximum orbit α1. (c) Landau level peaks assigned to the minimum orbit β1.
(d) Low-frequency oscillation visible in the C44 mode assigned to the minimum orbit β2. (e) Assignment of the remaining peaks in the high-field
range to the second maximum orbit of E1, γ1, and possibly the maximum orbit δ1. (f) Oscillation assigned to the maximum orbit α2 visible in
the C11 mode, emphasized by applying a low-pass Fourier filter. (g) Assigned Landau levels plotted versus inverse magnetic field. Solid lines
represent linear fits. The inset enlarges the high-field range.

3. Discussion of the phase factor

The phase factors extracted from fitting Eq. (1) to
the �v/v data are around 0.5 for the extremal or-
bits α2 and β2 on electron pocket E2 and vary from
0.27 to 0.20 for the orbits α1, β1, and γ1 on E1. Ac-
cording to recent theoretical works by Alexandradinata

et al. [37,38], the phase factor generally consists of three
contributions:

ϕ = ϕM − ϕB − ϕd, (4)

where ϕM is the Maslov correction (ϕM = 1/2 for orbits that
are compressible to a circle, which is the case for all orbits in
NbP); ϕB is the geometric phase, i.e., Berry phase [39], that
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TABLE I. Experimental results extracted from the analysis of quantum oscillations in the ultrasound velocity for H ‖ c. The calculated
orbits are denoted as in Ref. [18], and experimentally extracted frequencies F are assigned as in Refs. [18,23], considering also the asymmetry
of the Landau level peaks due to the extremal nature of the orbit (maximum or minimum). The cyclotron mass mc, cyclotron mobility μc,
Dingle temperature TD, phase factor ϕ, and effective deformation potential �i with respect to �1 are given where possible (only absolute
values). �s denotes the deformation potential corresponding to the (C11 − C12)/2 mode. Extr. refers to Extremal nature.

Orbit Extr. Ftheo (T)a Fexp (T) mc (in units of m0) μc (103cm2 V−1 s−1) TD (K) ϕ �1 (eV)b �3/�1 �4/�1 �6/�1 �s/�1

Electron pocket E1

α1 Max 32.8 30.89(5) 0.06(1) 25(5) 1.4(6) 0.27(1) 2.1(5) 0.9(1) 0.7(1) 0.24(4) 2.0(2)
β1 Min 11.3 14.74(4) 0.12(2) 9(1) 2.0(5) 0.23(1) 1.4(3) 1.2(1) 6.3(5) 0.8(1) 5.1(4)
γ1 Max 31.1 31.7(5) 0.20(2) 1.6(1) 3.0(2) 0.6(1) 3.2(3)

Electron pocket E2

α2 Max 7.92 6.81(7) 0.5(1)
β2 Min ≈1 0.9(1) 0.022(4) 70(20) 1.4(5) 0.49(2)
γ2 Max 4.7

Hole pocket H1

δ1 Max 41.4 42(1) 0.8(1) ≈0 ≈0 ≈0
Hole pocket H2

δ2 Max 22.1

aThe calculated frequencies were obtained from density functional theory in our previous study [23].
b�1 has been estimated with Eq. (5) using the averaged ∂F/∂ε1 values from Ref. [23].

an electron acquires upon encircling the orbit in reciprocal
space; and ϕd is the dynamic phase factor which accounts for
the generalized Zeeman interaction of the intrinsic and orbital
magnetic moment. The main interest in analyzing the phase
contributions lies in the extraction of ϕB, as it potentially
allows us to identify topologically nontrivial bands, such as
Weyl and Dirac bands [39]. Indeed, under certain symmetry

constraints (for details, see Refs. [37,38]) ϕd vanishes or can
only take quantized values ±1/2, which then allows us to
draw conclusions about ϕB. As all orbits in NbP for H ‖ c
can be mapped onto themselves in k space upon applying
a mirror operation (mirror planes kx = 0 or ky = 0, see Ref.
[34]), they belong to the classification (II-A, u = 1, s = 0) of
Table I in Ref. [37], and ϕd can be either 0 or 1/2 depending
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on details of the band structure. Hence, at first glance it may
seem that a deviation of ϕ from 0 or 1/2 can be regarded as a
signature of a non-zero ϕB; However, it was shown by Klotz
et al. [18] that the Fermi-surface pockets in NbP intersecting
with the Weyl bands, E1 and H1, always encompass a pair
of Weyl points and should thus exhibit a trivial phase shift
of ϕB = 1 or 0. Hence, the extracted phase factors of α1,
β1 and γ1 are at odds with the possible values predicted by
theory. It is rather speculative why that is the case, the reason
might be slight misalignment of the magnetic field, wrong
orbit assignment or, more generally, inaccuracy of the DFT
calculations, although the latter two are highly improbable
given the otherwise good agreement. The extracted ϕ of E2 do
not contradict theory, but are also not particularly informative
regarding the topological nature of the bands.

4. Extraction of the deformation potentials

Comparing the amplitudes of the same orbit for different
modes, the ratio of the C−1

ii (dF/dεi )2 values can be extracted.
With the known elastic constants from our previous study
[23], the ratio of the effective deformation potentials can then
be calculated via [2]

�i = dE

dεi
= dE

dAext

dAext

dεi
= h̄e

mc

∂F

∂εi
. (5)

The amplitude ratios for the individual orbits have been ex-
tracted by selecting easily distinguishable LL peaks (near the
quantum limit) and dividing their top-to-bottom heights. In
the case with no separate LL peak, for example, for the β1

orbit in C11 and C33, the height was estimated by fitting two
Lorentzian functions with fixed centers (Fig. 4), whereas the
center positions were extracted from comparison with other
modes (see Fig. 2). The resulting deformation potentials with
respect to �1 are summarized in Table I. They are strongly
anisotropic—measurable � values vary by up to a factor of
≈8 depending on the direction of strain—which reflects the
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FIG. 5. Frequency analysis of the giant quantum oscillations in
ultrasound attenuation for different modes at T = 1.35 K. (a) Landau
level peaks assigned to the resonant orbits F1 and F2. (b) Assigned
Landau levels plotted vs inverse magnetic field. Solid lines represent
linear fits.

anisotropy of the electronic bands in NbP (see DFT calcula-
tions in Refs. [34,40]). In contrast to the isotropic behavior
in conventional metals, the electron-phonon scattering in NbP
[and, transferably, other (Weyl) semimetals with anisotropic
bands] is highly selective.

With the ∂F/∂ε1 values gathered from Ref. [23], �1 can be
estimated via Eq. (5) to be 2.1 eV (2.5 eV) for α1 and 1.4 eV
(2.2 eV) for β1, taking experimental (calculated) values. For
β1, this results in an effective deformation potential of 9 eV
(14 eV) for shear strain along c. This potential is among the
highest reported values [10,41,42] and illustrates how elec-
trons in the narrow part of the electron pocket are extremely
susceptible to interaction with phonon modes corresponding
to such shear strain. We note that upon applying strain along
an axis perpendicular to the c axis, the breaking of the ro-
tational symmetry leads to a degeneracy lifting of the Fermi
pockets and ∂F/∂ε1 actually splits into a positive branch and
a negative branch [23]. As in Eq. (1) the sign of ∂F/∂ε1 is
canceled due to the square; we took the average of the absolute
values in order to estimate �1.

B. Giant quantum oscillations in ultrasound attenuation

The giant QOs in �α are less straightforward to analyze,
as the position of the resonant orbits in reciprocal space
is rather complicated to determine for each corresponding
phonon mode. If plotted against 1/H [Fig. 5(a)], two periodic
series of spikes are very clearly distinguishable, labeled F1

and F2. The Onsager relation is valid for the giant QOs as
well; linear fits to the spike positions vs LL number yield
F1 = 29.8 T and F2 = 14.5 T [Fig. 5(b)]. The areas enclosed
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by the resonant orbits are thus close to those of α1 and β1. A
puzzling feature is the observation of the same frequencies in
two modes with perpendicular q, e.g., F1 in both C11 and C33.
This observation might be explained by the peculiar shape of
the Fermi surface in NbP, where fourfold-degenerate sickle-
like pockets are located near the edges of the first Brillouin
zone. In this particular case, the resonant condition might be
fulfilled for the same orbit for elastic waves propagating along
both a and c.

In contrast to the QO in �v/v, the exact shape of the spikes
in �α is rather difficult to fit. Each δ function correspond-
ing to a spike must be convoluted with various distribution
functions accounting for the effects of finite temperature and
electron scattering [1]. In our case, this did not seem viable as
multiple frequencies superimpose on each other, and similar
information on the electronic properties was already extracted
from the QOs in �v/v, where the signal-to-noise ratio was
also more favorable. Nevertheless, the slight asymmetry of
the spikes can be attributed to an indirect effect of electron
scattering, where the smearing of the LL relaxes the resonance
condition [1]. The spikes of F1 and F2 are broader towards the
low-field side [see Fig. 1(b)], which is indicative of a convex
curvature of the Fermi surface at the resonant orbit (A′′ < 0).

IV. SUMMARY

In summary, we studied the QOs in ultrasound velocity
and attenuation in NbP in pulsed magnetic fields. Fields with
H ‖ c beyond the quantum limit were applied. We compared
the QOs for several acoustic modes, revealing significant dif-

ferences regarding which orbits are dominant. By extracting
the amplitudes of the QOs in the ultrasound velocity, the
anisotropy of the deformation potentials was determined for
several extremal orbits. A large deformation potential of ap-
proximately 9 eV for the minimum orbit β1 under shear strain
along the c axis was revealed, suggesting that electrons in this
part of the Fermi surface are very susceptible to interactions
with the phonon modes corresponding to C44. Furthermore,
the high harmonic content of the QOs and the large field range
allowed for a more reliable determination of the frequencies,
effective cyclotron masses, and mobilities, as was previously
achieved by means of Fourier analysis. As a side note, we
did not find any signatures for correlated electron states in the
quantum limit of (pristine) NbP.
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