81 research outputs found
High field hybrid photoinjector electron source for advanced light source applications
The production of high spectral brilliance radiation from electron beam sources depends critically on the electron beam qualities. One must obtain very high electron beam brightness, implying simultaneous high peak current and low emittance. These attributes are enabled through the use of very high field acceleration in a radio-frequency (rf) photoinjector source. Despite the high fields currently utilized, there is a limit on the achievable peak current in high brightness operation, in the range of tens of Ampere. This limitation can be overcome by the use of a hybrid standing wave/traveling wave structure; the standing wave portion provides acceleration at a high field from the photocathode, while the traveling wave part yields strong velocity bunching. This approach is explored here in a C-band scenario, at field strengths (>100 MV/m) at the current state-of-the-art. It is found that one may arrive at an electron beam with many hundreds of Amperes with well-sub-micron normalized emittance. This extremely compact injector system also possesses attractive simplification of the rf distribution system by eliminating the need for an rf circulator. We explore the use of this device in a compact 400 MeV-class source, driving both inverse Compton scattering and free-electron laser radiation sources with unique, attractive properties
Transcriptomic, proteomic and metabolomic analysis of UV-B signaling in maize
<p>Abstract</p> <p>Background</p> <p>Under normal solar fluence, UV-B damages macromolecules, but it also elicits physiological acclimation and developmental changes in plants. Excess UV-B decreases crop yield. Using a treatment twice solar fluence, we focus on discovering signals produced in UV-B-irradiated maize leaves that translate to systemic changes in shielded leaves and immature ears.</p> <p>Results</p> <p>Using transcriptome and proteomic profiling, we tracked the kinetics of transcript and protein alterations in exposed and shielded organs over 6 h. In parallel, metabolic profiling identified candidate signaling molecules based on rapid increase in irradiated leaves and increased levels in shielded organs; pathways associated with the synthesis, sequestration, or degradation of some of these potential signal molecules were UV-B-responsive. Exposure of just the top leaf substantially alters the transcriptomes of both irradiated and shielded organs, with greater changes as additional leaves are irradiated. Some phenylpropanoid pathway genes are expressed only in irradiated leaves, reflected in accumulation of pathway sunscreen molecules. Most protein changes detected occur quickly: approximately 92% of the proteins in leaves and 73% in immature ears changed after 4 h UV-B were altered by a 1 h UV-B treatment.</p> <p>Conclusions</p> <p>There were significant transcriptome, proteomic, and metabolomic changes under all conditions studied in both shielded and irradiated organs. A dramatic decrease in transcript diversity in irradiated and shielded leaves occurs between 0 h and 1 h, demonstrating the susceptibility of plants to short term UV-B spikes as during ozone depletion. Immature maize ears are highly responsive to canopy leaf exposure to UV-B.</p
Photosynthetic electron flow affects H2O2 signaling by inactivation of catalase in Chlamydomonas reinhardtii
A specific signaling role for H2O2 in Chlamydomonas reinhardtii was demonstrated by the definition of a promoter that specifically responded to this ROS. Expression of a nuclear-encoded reporter gene driven by this promoter was shown to depend not only on the level of exogenously added H2O2 but also on light. In the dark, the induction of the reporter gene by H2O2 was much lower than in the light. This lower induction was correlated with an accelerated disappearance of H2O2 from the culture medium in the dark. Due to a light-induced reduction in catalase activity, H2O2 levels in the light remained higher. Photosynthetic electron transport mediated the light-controlled down-regulation of the catalase activity since it was prevented by 3-(3′4′-dichlorophenyl)-1,1-dimethylurea (DCMU), an inhibitor of photosystem II. In the presence of light and DCMU, expression of the reporter gene was low while the addition of aminotriazole, a catalase inhibitor, led to a higher induction of the reporter gene by H2O2 in the dark. The role of photosynthetic electron transport and thioredoxin in this regulation was investigated by using mutants deficient in photosynthetic electron flow and by studying the correlation between NADP-malate dehydrogenase and catalase activities. It is proposed that, contrary to expectations, a controlled down-regulation of catalase activity occurs upon a shift of cells from dark to light. This down-regulation apparently is necessary to maintain a certain level of H2O2 required to activate H2O2-dependent signaling pathways
A Plant DJ-1 Homolog Is Essential for Arabidopsis thaliana Chloroplast Development
Protein superfamilies can exhibit considerable diversification of function among their members in various organisms. The DJ-1 superfamily is composed of proteins that are principally involved in stress response and are widely distributed in all kingdoms of life. The model flowering plant Arabidopsis thaliana contains three close homologs of animal DJ-1, all of which are tandem duplications of the DJ-1 domain. Consequently, the plant DJ-1 homologs are likely pseudo-dimeric proteins composed of a single polypeptide chain. We report that one A. thaliana DJ-1 homolog (AtDJ1C) is the first DJ-1 homolog in any organism that is required for viability. Homozygous disruption of the AtDJ1C gene results in non-viable, albino seedlings that can be complemented by expression of wild-type or epitope-tagged AtDJ1C. The plastids from these dj1c plants lack thylakoid membranes and granal stacks, indicating that AtDJ1C is required for proper chloroplast development. AtDJ1C is expressed early in leaf development when chloroplasts mature, but is downregulated in older tissue, consistent with a proposed role in plastid development. In addition to its plant-specific function, AtDJ1C is an atypical member of the DJ-1 superfamily that lacks a conserved cysteine residue that is required for the functions of most other superfamily members. The essential role for AtDJ1C in chloroplast maturation expands the known functional diversity of the DJ-1 superfamily and provides the first evidence of a role for specialized DJ-1-like proteins in eukaryotic development
A Polyadenylation Factor Subunit Implicated in Regulating Oxidative Signaling in Arabidopsis thaliana
BACKGROUND: Plants respond to many unfavorable environmental conditions via signaling mediated by altered levels of various reactive oxygen species (ROS). To gain additional insight into oxidative signaling responses, Arabidopsis mutants that exhibited tolerance to oxidative stress were isolated. We describe herein the isolation and characterization of one such mutant, oxt6. METHODOLOGY/PRINCIPAL FINDINGS: The oxt6 mutation is due to the disruption of a complex gene (At1g30460) that encodes the Arabidopsis ortholog of the 30-kD subunit of the cleavage and polyadenylation specificity factor (CPSF30) as well as a larger, related 65-kD protein. Expression of mRNAs encoding Arabidopsis CPSF30 alone was able to restore wild-type growth and stress susceptibility to the oxt6 mutant. Transcriptional profiling and single gene expression studies show elevated constitutive expression of a subset of genes that encode proteins containing thioredoxin- and glutaredoxin-related domains in the oxt6 mutant, suggesting that stress can be ameliorated by these gene classes. Bulk poly(A) tail length was not seemingly affected in the oxt6 mutant, but poly(A) site selection was different, indicating a subtle effect on polyadenylation in the mutant. CONCLUSIONS/SIGNIFICANCE: These results implicate the Arabidopsis CPSF30 protein in the posttranscriptional control of the responses of plants to stress, and in particular to the expression of a set of genes that suffices to confer tolerance to oxidative stress
Heat and water stress induce unique transcriptional signatures of heat-shock proteins and transcription factors in grapevine
Grapevine is an extremely important crop worldwide.
In southern Europe, post-flowering phases of the growth
cycle can occur under high temperatures, excessive light, and
drought conditions at soil and/or atmospheric level. In this
study, we subjected greenhouse grown grapevine, variety
Aragonez, to two individual abiotic stresses, water deficit stress
(WDS), and heat stress (HS). The adaptation of plants to stress
is a complex response triggered by cascades of molecular
networks involved in stress perception, signal transduction,
and the expression of specific stress-related genes and metabolites.
Approaches such as array-based transcript profiling allow
assessing the expression of thousands of genes in control
and stress tissues. Using microarrays, we analyzed the leaf
transcriptomic profile of the grapevine plants. Photosynthesis
measurements verified that the plants were significantly affected
by the stresses applied. Leaf gene expression was obtained
using a high-throughput transcriptomic grapevine array, the
23K custom-made Affymetrix Vitis GeneChip. We identified
1,594 genes as differentially expressed between control and
treatments and grouped them into ten major functional categories
using MapMan software. The transcriptome of Aragonez
was more significantly affected by HS when compared with
WDS. The number of genes coding for heat-shock proteins and
transcription factors expressed solely in response to HS suggesting
their expression as unique signatures of HS. However, a cross-talk between the response pathways to both stresses was
observed at the level of AP2/ERF transcription factors
Plant hormone-mediated regulation of stress responses
10.1186/s12870-016-0771-yBMC Plant Biology1618
- …