41 research outputs found

    Tendinopathy—from basic science to treatment

    Get PDF
    Chronic tendon pathology (tendinopathy), although common, is difficult to treat. Tendons possess a highly organized fibrillar matrix, consisting of type I collagen and various 'minor' collagens, proteoglycans and glycoproteins. The tendon matrix is maintained by the resident tenocytes, and there is evidence of a continuous process of matrix remodeling, although the rate of turnover varies at different sites. A change in remodeling activity is associated with the onset of tendinopathy. Major molecular changes include increased expression of type III collagen, fibronectin, tenascin C, aggrecan and biglycan. These changes are consistent with repair, but they might also be an adaptive response to changes in mechanical loading. Repeated minor strain is thought to be the major precipitating factor in tendinopathy, although further work is required to determine whether it is mechanical overstimulation or understimulation that leads to the change in tenocyte activity. Metalloproteinase enzymes have an important role in the tendon matrix, being responsible for the degradation of collagen and proteoglycan in both healthy patients and those with disease. Metalloproteinases that show increased expression in painful tendinopathy include ADAM (a disintegrin and metalloproteinase)-12 and MMP (matrix metalloproteinase)-23. The role of these enzymes in tendon pathology is unknown, and further work is required to identify novel and specific molecular targets for therapy

    Urocortin protects chondrocytes from NO-induced apoptosis: a future therapy for osteoarthritis?

    Get PDF
    Osteoarthritis (OA) is characterized by a loss of joint mobility and pain resulting from progressive destruction and loss of articular cartilage secondary to chondrocyte death and/ or senescence. Certain stimuli including nitric oxide (NO) and the pro-inflammatory cytokine tumor necrosis factor α (TNF-α have been implicated in this chondrocyte death and the subsequent accelerated damage to cartilage. In this study, we demonstrate that a corticotrophin releasing factor (CRF) family peptide, urocortin (Ucn), is produced by a human chondrocyte cell line, C-20/A4, and acts both as an endogenous survival signal and as a cytoprotective agent reducing the induction of apoptosis by NO but not TNF-α when added exogenously. Furthermore, treatment with the NO donor S-nitroso-N-acetyl-D-L-penicillamine upregulates chondrocyte Ucn expression, whereas treatment with TNF-α does not. The chondroprotective effects of Ucn are abolished by both specific ligand depletion (with an anti-Ucn antibody) and by CRF receptor blockade with the pan-CRFR antagonist α-helical CRH(9-41). CRFR expression was confirmed by reverse transcription-PCR with subsequent amplicon sequence analysis and demonstrates that C-20/A4 cells express both CRFR1 and CRFR2, specifically CRFR1α and CRFR2β. Protein expression of these receptors was confirmed by western blotting. The presence of both Ucn and its receptors in these cells, coupled with the induction of Ucn by NO, suggests the existence of an endogenous autocrine/paracrine chondroprotective mechanism against stimuli inducing chondrocyte apoptosis via the intrinsic/mitochondrial pathway

    Klinische Diagnose eines Ganglions am superioren Glenoid mit Kompression des N. suprascapularis (GLEN Läsion)

    No full text
    Bertram Mills' Circus transport (paybox vans) photographed 12 August 1958. Digitisation and record funded by the Pilgrim Trust

    Frog glue enhances rotator cuff repair in a laboratory cadaveric model

    No full text
    SummaryRotator cuff tendons are typically reattached to the proximal humerus using transosseous sutures or suture anchors. Their primary mode of failure is at the tendon-bone interface. We investigated the addition of a novel adhesive secreted from a species of Australian frog (Notaden bennetti) to different methods of rotator cuff repair. We hypothesized that the addition of frog glue would increase the strength of the repaired rotator cuff construct. Three techniques were used to repair 42 fresh frozen sheep infraspinatus tendons with a mattress stitch configuration: transosseous sutures; 2 traditional metallic suture anchors with 1 suture per anchor, and 2 knotless metallic anchors with 1 suture per anchor. In each group, 7 shoulders were repaired with the addition of frog glue to the infraspinatus "footprint," whereas 7 were used as control with no adhesive. Failure occurred in all constructs at the tendon-bone-suture interface. Repair with suture anchors was stronger than with sutures through bone (P Level of evidenceBasic science study.Neal L. Millar, Timothy A. Bradley, Nicola A. Walsh, Richard C. Appleyard, Michael J. Tyler, and George A.C. Murrel
    corecore