576 research outputs found

    Field of management services as seen by the CPA

    Get PDF

    Genetic analysis of the Linnaean Ulva lactuca (Ulvales, Chlorophyta) holotype and related type specimens reveals name misapplications, unexpected origins, and new synonymies.

    Get PDF
    Current usage of the name Ulva lactuca, the generitype of Ulva, remains uncertain. Genetic analyses were performed on the U. lactuca Linnaean holotype, the U. fasciata epitype, the U. fenestrata holotype, the U. lobata lectotype, and the U. stipitata lectotype. The U. lactuca holotype is nearly identical in rbcL sequence to the U. fasciata epitype, a warm temperate to tropical species, rather than the cold temperate species to which the name U. lactuca has generally been applied. We hypothesize that the holotype specimen of U. lactuca came from the Indo-Pacific rather than northern Europe. Our analyses indicate that U. fasciata and U. lobata are heterotypic synonyms of U. lactuca. Ulva fenestrata is the earliest name for northern hemisphere, cold temperate Atlantic and Pacific species, with U. stipitata a junior synonym. DNA sequences from type specimens provide an unequivocal method for applying names to Ulva species. This article is protected by copyright. All rights reserved

    Molecular and Morphological Diversity of Lithothamnion spp. (Hapalidiales, Rhodophyta) from Deepwater Rhodolith Beds in the Northwestern Gulf of Mexico

    Get PDF
    In the Northwestern Gulf of Mexico (NWGMx), subtidal rhodolith beds offshore Louisiana at 45–80 m depth harbor a diverse community of uncharacterized non-geniculate coralline algae including both biogenic and autogenic rhodoliths and other encrusting taxa. Identifying specimens to their correct genus and species is an ongoing process because many available names remain to be validated by comparison to type specimens. Here, comparative DNA sequencing ( psb A, UPA, and COI) and scanning electron microscopy (SEM) are used to assess the molecular and morphological diversity of the rhodolith-forming specimens belonging to the generic concept of Lithothamnion . Phylogenetic and species delimitation analyses of the newly generated sequences from recently dredged specimens at Ewing and Sackett Banks offshore Louisiana reveal the presence of at least six species of Lithothamnion , whose generic placement is confirmed by SEM images of features considered characteristic for the genus. More broadly, our analyses indicate at least eight Lithothamnion species are found in the Gulf of Mexico. Phylogenetic analyses of single ( psb A and COI) and concatenated markers ( psb A, COI and UPA) show that Lithothamnion is polyphyletic

    Calcifying algae maintain settlement cues to larval abalone following algal exposure to extreme ocean acidification

    Get PDF
    Ocean acidification (OA) increasingly threatens marine systems, and is especially harmful to calcifying organisms. One important question is whether OA will alter species interactions. Crustose coralline algae (CCA) provide space and chemical cues for larval settlement. CCA have shown strongly negative responses to OA in previous studies, including disruption of settlement cues to corals. In California, CCA provide cues for seven species of harvested, threatened, and endangered abalone. We exposed four common CCA genera and a crustose calcifying red algae, Peyssonnelia (collectively CCRA) from California to three pCO levels ranging from 419-2,013 µatm for four months. We then evaluated abalone (Haliotis rufescens) settlement under ambient conditions among the CCRA and non-algal controls that had been previously exposed to the pCO treatments. Abalone settlement and metamorphosis increased from 11% in the absence of CCRA to 45-69% when CCRA were present, with minor variation among CCRA genera. Though all CCRA genera reduced growth during exposure to increased pCO , abalone settlement was unaffected by prior CCRA exposure to increased pCO . Thus, we find no impacts of OA exposure history on CCRA provision of settlement cues. Additionally, there appears to be functional redundancy in genera of CCRA providing cues to abalone, which may further buffer OA effects

    Tumor and serum DNA methylation in women receiving preoperative chemotherapy with or without vorinostat in TBCRC008

    Get PDF
    BACKGROUND: Methylated gene markers have shown promise in predicting breast cancer outcomes and treatment response. We evaluated whether baseline and changes in tissue and serum methylation levels would predict pathological complete response (pCR) in patients with HER2-negative early breast cancer undergoing preoperative chemotherapy. METHODS: The TBCRC008 trial investigated pCR following 12 weeks of preoperative carboplatin and albumin-bound paclitaxel + vorinostat/placebo (n = 62). We measured methylation of a 10-gene panel by quantitative multiplex methylation-specific polymerase chain reaction and expressed results as cumulative methylation index (CMI). We evaluated association between CMI level [baseline, day 15 (D15), and change] and pCR using univariate and multivariable logistic regression models controlling for treatment and hormone receptor (HR) status, and performed exploratory subgroup analyses. RESULTS: In univariate analysis, one log unit increase in tissue CMI levels at D15 was associated with 40% lower chance of obtaining pCR (odds ratio, OR 0.60, 95% CI 0.37-0.97; p = 0.037). Subgroup analyses suggested a significant association between tissue D15 CMI levels and pCR in vorinostat-treated [OR 0.44 (0.20, 0.93), p = 0.03], but not placebo-treated patients. CONCLUSION: In this study investigating the predictive roles of tissue and serum CMI levels in patients with early breast cancer for the first time, we demonstrate that high D15 tissue CMI levels may predict poor response. Larger studies and improved analytical procedures to detect methylated gene markers in early stage breast cancer are needed. TBCRC008 is registered on ClinicalTrials.gov (NCT00616967)

    An all silicon quantum computer

    Get PDF
    A solid-state implementation of a quantum computer composed entirely of silicon is proposed. Qubits are Si-29 nuclear spins arranged as chains in a Si-28 (spin-0) matrix with Larmor frequencies separated by a large magnetic field gradient. No impurity dopants or electrical contacts are needed. Initialization is accomplished by optical pumping, algorithmic cooling, and pseudo-pure state techniques. Magnetic resonance force microscopy is used for readout. This proposal takes advantage of many of the successful aspects of solution NMR quantum computation, including ensemble measurement, RF control, and long decoherence times, but it allows for more qubits and improved initialization.Comment: ReVTeX 4, 5 pages, 2 figure

    Catheter-associated urinary infections and consequences of using coated versus non-coated urethral catheters-outcomes of a systematic review and meta-analysis of randomized trials

    Get PDF
    Coated urethral catheters were introduced in clinical practice to reduce the risk of catheter-acquired urinary tract infection (CAUTI). We aimed to systematically review the incidence of CAUTI and adverse effects in randomized clinical trials of patients requiring indwelling bladder catheterization by comparing coated vs. non-coated catheters. This review was performed according to the 2020 PRISMA framework. The incidence of CAUTI and catheter-related adverse events was evaluated using the Cochran-Mantel-Haenszel method with a random-effects model and reported as the risk ratio (RR), 95% CI, and p-values. Significance was set at p 14 days) (RR 0.82 95% CI 0.68-0.99, p = 0.04). There was no difference between the two groups in the incidence of the need for catheter exchange or the incidence of lower urinary tract symptoms after catheter removal. The benefit of coated catheters in reducing CAUTI risk among patients requiring long-term catheterization should be balanced against the increased direct costs to health care systems when compared to non-coated catheters

    Altered Tyrosine Phosphorylation of Cardiac Proteins Prompts Contractile Dysfunction in Hypertrophic Cardiomyopathy

    Get PDF
    Altered Serine/Threonine phosphorylation of the cardiac proteome is an established hallmark of heart failure (HF). However, the contribution of tyrosine phosphorylation to the pathogenesis of these diseases remains unclear. The cardiac proteome was explored by global mapping to discover and quantify site-specific tyrosine phosphorylation in two cardiac hypertrophic models; cardiac overexpression of ErbB2 (TgErbB2) and cardiac expression of a-Myosin heavy chain R403Q (R403Q-aMyHCTg) compared to control hearts. Phosphoproteomic changes found in R403Q-aMyHC Tg mice indicated EGFR1, Focal Adhesion, VEGF, ErbB signaling, and Chemokine signaling pathways activity were likely to be activated. On the other hand, TgErbB2 mice findings displayed significant overrepresentation of Right Ventricular Cardiomyopathy, Hypertrophic Cardiomyopathy (HCM), and dilated cardiomyopathy (DCM) KEGG Pathways. In silico kinase-substrate enrichment analysis (KSEA) highlighted a marked downregulation of canonical MAPK Pathway Activity downstream of k-Ras in TgErbB2 mice and activation of EGFR, PP2 inhibition of c-Src, and Hepatocyte growth factor stimulation. In vivo ErbB2 inhibition by AG-825 decreased cardiac fibrosis, cardiomyocyte disarray, and rescued contractile function on TgErbB2 mice. These results suggest that altered tyrosine phosphorylation may play a regulatory role in cardiac hypertrophic models, suggesting that tyrosine kinase inhibitors could be used therapeutically in Hypertrophic Cardiomyopathy

    Mesophyllum erubescens (Corallinales, Rhodophyta)—so many species in one epithet

    Get PDF
    The name Mesophyllum erubescens has been applied to protuberant rhodolith specimens which sometimes occur abundantly, as well as to encrusting specimens in tropical and temperate waters in the Western Pacific, Indian and Western Atlantic Oceans. A DNA sequence, representing about 20% of the rbcL gene, was obtained from the 140 year old holotype specimen collected in the Fernando de Noronha Archipelago by the Challenger Expedition. This sequence was identical to field-collected topotype specimens as well as to specimens ranging south along the coast of Brazil. Sequences for psbA from these same Brazilian specimens and specimens from the east coast of Mexico were identical or differed by 1 base pair. In contrast, specimens called M. erubescens based on morpho-anatomical characters in the Pacific Ocean differed from Western Atlantic Ocean specimens by 2.5–13.1%, indicating that these represent numerous distinct species. All reports of non-geniculate coralline species said to be widely distributed across different oceans or in different biogeographic provinces based on morpho-anatomical characters need to be verified by DNA sequence

    Inhibition of Hedgehog Signaling Decreases Proliferation and Clonogenicity of Human Mesenchymal Stem Cells

    Get PDF
    Human mesenchymal stem cells (hMSC) have the ability to differentiate into osteoblasts, adipocytes and chondrocytes. We have previously shown that hMSC were endowed with a basal level of Hedgehog signaling that decreased after differentiation of these cells. Since hMSC differentiation is associated with growth-arrest we investigated the function of Hh signaling on cell proliferation. Here, we show that inhibition of Hh signaling, using the classical inhibitor cyclopamine, or a siRNA directed against Gli-2, leads to a decrease in hMSC proliferation. This phenomenon is not linked to apoptosis but to a block of the cells in the G0/G1 phases of the cell cycle. At the molecular level, it is associated with an increase in the active form of pRB, and a decrease in cyclin A expression and MAP kinase phosphorylation. Inhibition of Hh signaling is also associated with a decrease in the ability of the cells to form clones. By contrast, inhibition of Hh signaling during hMSC proliferation does not affect their ability to differentiate. This study demonstrates that hMSC are endowed with a basal Hedgehog signaling activity that is necessary for efficient proliferation and clonogenicity of hMSC. This observation unravels an unexpected new function for Hedgehog signaling in the regulation of human mesenchymal stem cells and highlights the critical function of this morphogen in hMSC biology
    • …
    corecore