85 research outputs found

    Federated learning enables big data for rare cancer boundary detection

    Get PDF
    Although machine learning (ML) has shown promise in numerous domains, there are concerns about generalizability to out-of-sample data. This is currently addressed by centrally sharing ample, and importantly diverse, data from multiple sites. However, such centralization is challenging to scale (or even not feasible) due to various limitations. Federated ML (FL) provides an alternative to train accurate and generalizable ML models, by only sharing numerical model updates. Here we present findings from the largest FL study to-date, involving data from 71 healthcare institutions across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, utilizing the largest dataset of such patients ever used in the literature (25,256 MRI scans from 6,314 patients). We demonstrate a 33% improvement over a publicly trained model to delineate the surgically targetable tumor, and 23% improvement over the tumor's entire extent. We anticipate our study to: 1) enable more studies in healthcare informed by large and diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further quantitative analyses for glioblastoma via performance optimization of our consensus model for eventual public release, and 3) demonstrate the effectiveness of FL at such scale and task complexity as a paradigm shift for multi-site collaborations, alleviating the need for data sharing

    Retracting and seeking movements during laparoscopic goal-oriented movements. Is the shortest path length optimal?

    Get PDF
    Aims- Minimally invasive surgery (MIS) requires a high degree of eye–hand coordination from the surgeon. To facilitate the learning process, objective assessment systems based on analysis of the instruments’ motion are being developed. To investigate the influence of performance on motion characteristics, we examined goaloriented movements in a box trainer. In general, goal-oriented movements consist of a retracting and a seeking phase, and are, however, not performed via the shortest path length. Therefore, we hypothesized that the shortest path is not an optimal concept in MIS. Methods-Participants were divided into three groups (experts, residents, and novices). Each participant performed a number of one-hand positioning tasks in a box trainer. Movements of the instrument were recorded with the TrEndo tracking system. The movement from point A to B was divided into two phases: A-M (retracting) and M-B (seeking). Normalized path lengths (given in %) of the two phases were compared. Results- Thirty eight participants contributed. For the retracting phase, we found no significant difference between experts [median (range) %: 152 (129–178)], residents [164 (126–250)], and novices [168 (136–268)]. In the seeking phase, we find a significant difference (<0.001) between experts [180 (172–247)], residents [201 (163–287)], and novices [290 (244–469)]. Moreover, within each group, a significant difference between retracting and seeking phases was observed. Conclusions- Goal-oriented movements in MIS can be split into two phases: retracting and seeking. Novices are less effective than experts and residents in the seeking phase. Therefore, the seeking phase is characteristic of performance differences. Furthermore, the retracting phase is essential, because it improves safety by avoiding intermediate tissue contact. Therefore, the shortest path length, as presently used during the assessment of basic MIS skills, may be not a proper concept for analyzing optimal movements and, therefore, needs to be revised.Biomechanical EngineeringMechanical, Maritime and Materials Engineerin

    Defensive properties of pyrrolizidine alkaloids against microorganisms

    Get PDF
    The understanding of the selection factors that drive chemical diversification of secondary metabolites of constitutive defence systems in plants, such as pyrrolizidine alkaloids (PAs), is still incomplete. Historically, plants always have been confronted with microorganisms. Long before herbivores existed on this planet, plants had to cope with microbial pathogens. Therefore, plant pathogenic microorganisms may have played an important role in the early evolution of the secondary metabolite diversity. In this review, we discuss the impact that plant-produced PAs have on plant-associated microorganisms. The objective of the review is to present the current knowledge on PAs with respect to anti-microbial activities, adaptation and detoxification by microorganisms, pathogenic fungi, root protection and PA induction. Many in vitro experiments showed effects of PAs on microorganisms. These results point to the potential of microorganisms to be important for the evolution of PAs. However, only a few in vivo studies have been published and support the results of the in vitro studies. In conclusion, the topics pointed out in this review need further exploration by carrying out ecological experiments and field studies

    Combining eye and hand in search is suboptimal

    Get PDF
    When performing everyday tasks, we often move our eyes and hand together: we look where we are reaching in order to better guide the hand. This coordinated pattern with the eye leading the hand is presumably optimal behaviour. But eyes and hands can move to different locations if they are involved in different tasks. To find out whether this leads to optimal performance, we studied the combination of visual and haptic search. We asked ten participants to perform a combined visual and haptic search for a target that was present in both modalities and compared their search times to those on visual only and haptic only search tasks. Without distractors, search times were faster for visual search than for haptic search. With many visual distractors, search times were longer for visual than for haptic search. For the combined search, performance was poorer than the optimal strategy whereby each modality searched a different part of the display. The results are consistent with several alternative accounts, for instance with vision and touch searching independently at the same time

    Climate Driven Egg and Hatchling Mortality Threatens Survival of Eastern Pacific Leatherback Turtles

    Get PDF
    Egg-burying reptiles need relatively stable temperature and humidity in the substrate surrounding their eggs for successful development and hatchling emergence. Here we show that egg and hatchling mortality of leatherback turtles (Dermochelys coriacea) in northwest Costa Rica were affected by climatic variability (precipitation and air temperature) driven by the El Niño Southern Oscillation (ENSO). Drier and warmer conditions associated with El Niño increased egg and hatchling mortality. The fourth assessment report of the Intergovernmental Panel on Climate Change (IPCC) projects a warming and drying in Central America and other regions of the World, under the SRES A2 development scenario. Using projections from an ensemble of global climate models contributed to the IPCC report, we project that egg and hatchling survival will rapidly decline in the region over the next 100 years by ∼50–60%, due to warming and drying in northwestern Costa Rica, threatening the survival of leatherback turtles. Warming and drying trends may also threaten the survival of sea turtles in other areas affected by similar climate changes

    Absence of Ataxin-3 Leads to Enhanced Stress Response in C. elegans

    Get PDF
    Ataxin-3, the protein involved in Machado-Joseph disease, is able to bind ubiquitylated substrates and act as a deubiquitylating enzyme in vitro, and it has been involved in the modulation of protein degradation by the ubiquitin-proteasome pathway. C. elegans and mouse ataxin-3 knockout models are viable and without any obvious phenotype in a basal condition however their phenotype in stress situations has never been described

    Species by Environment Interactions Affect Pyrrolizidine Alkaloid Expression in Senecio jacobaea, Senecio aquaticus, and Their Hybrids

    Get PDF
    We examined the effects of water and nutrient availability on the expression of the defense pyrrolizidine alkaloids (PAs) in Senecio jacobaea and S. aquaticus. Senecio jacobaea, and S. aquaticus are adapted to different natural habitats, characterized by differing abiotic conditions and different selection pressures from natural enemies. We tested if PA concentration and diversity are plastic over a range of water and nutrient treatments, and also whether such plasticity is dependent on plant species. We also tested the hypothesis that hybridization may contribute to PA diversity within plants, by comparing PA expression in parental species to that in artificially generated F1 hybrids, and also in later generation natural hybrids between S. jacobaea and S. aquaticus. We showed that total PA concentration in roots and shoots is not dependent on species, but that species determines the pattern of PA diversification. Pyrrolizidine alkaloid diversity and concentration are both dependent on environmental factors. Hybrids produce a putatively novel PA, and this PA is conserved in natural hybrids, that are backcrossed to S. jacobaea. Natural hybrids that are backcrossed several times to S. jacobaea are with regard to PA diversity significantly different from S. jacobaea but not from S. aquaticus, while F1 hybrids are in all cases more similar to S. jacobaea. These results collectively suggest that PA diversity is under the influence of natural selection

    Differential Regional Immune Response in Chagas Disease

    Get PDF
    Following infection, lymphocytes expand exponentially and differentiate into effector cells to control infection and coordinate the multiple effector arms of the immune response. Soon after this expansion, the majority of antigen-specific lymphocytes die, thus keeping homeostasis, and a small pool of memory cells develops, providing long-term immunity to subsequent reinfection. The extent of infection and rate of pathogen clearance are thought to determine both the magnitude of cell expansion and the homeostatic contraction to a stable number of memory cells. This straight correlation between the kinetics of T cell response and the dynamics of lymphoid tissue cell numbers is a constant feature in acute infections yielded by pathogens that are cleared during the course of response. However, the regional dynamics of the immune response mounted against pathogens that are able to establish a persistent infection remain poorly understood. Herein we discuss the differential lymphocyte dynamics in distinct central and peripheral lymphoid organs following acute infection by Trypanosoma cruzi, the causative agent of Chagas disease. While the thymus and mesenteric lymph nodes undergo a severe atrophy with massive lymphocyte depletion, the spleen and subcutaneous lymph nodes expand due to T and B cell activation/proliferation. These events are regulated by cytokines, as well as parasite-derived moieties. In this regard, identifying the molecular mechanisms underlying regional lymphocyte dynamics secondary to T. cruzi infection may hopefully contribute to the design of novel immune intervention strategies to control pathology in this infection

    Negative updating applied to the best-of-n problem with noisy qualities

    Get PDF
    The ability to perform well in the presence of noise is an important consideration when evaluating the effectiveness of a collective decision-making framework. Any system deployed for real-world applications will have to perform well in complex and uncertain environments, and a component of this is the limited reliability and accuracy of evidence sources. In particular, in swarm robotics there is an emphasis on small and inexpensive robots which are often equipped with low-cost sensors more prone to suffer from noisy readings. This paper presents an exploratory investigation into the robustness of a negative updating approach to the best-of-n problem which utilises negative feedback from direct pairwise comparison of options and opinion pooling. A site selection task is conducted with a small-scale swarm of five e-puck robots choosing between n= 7 options in a semi-virtual environment with varying levels of sensor noise. Simulation experiments are then used to investigate the scalability of the approach. We now vary the swarm size and observe the behaviour as the number of options n increases for different error levels with different pooling regimes. Preliminary results suggest that the approach is robust to noise in the form of noisy sensor readings for even small populations by supporting self-correction within the population

    Facile fabrication of properties-controllable graphene sheet

    Get PDF
    Graphene has been received a considerable amount of attention as a transparent conducting electrode (TCE) which may be able to replace indium tin oxide (ITO) to overcome the significant weakness of the poor flexibility of ITO. Given that graphene is the thinnest 2-dimensional (2D) material known, it shows extremely high flexibility, and its lateral periodic honeycomb structure of sp2 -bonded carbon atoms enables ???2.3% of incident light absorption per layer. However, there is a trade-off between the electrical resistance and the optical transmittance, and the fixed absorption rate in graphene limits is use when fabricating devices. Therefore, a more efficient method which continuously controls the optical and electrical properties of graphene is needed. Here, we introduce a method which controls the optical transmittance and the electrical resistance of graphene through various thicknesses of the top Cu layers with a Cu/Ni metal catalyst structure used to fabricate a planar mesh pattern of single and multi-layer graphene. We exhibit a continuous transmittance change from 85% (MLG) to 97.6% (SLG) at an incident light wavelength of 550 nm on graphene samples simultaneously grown in a CVD quartz tube. We also investigate the relationships between the sheet resistances.clos
    corecore