11 research outputs found

    Gene Discovery in the Threatened Elkhorn Coral: 454 Sequencing of the Acropora palmata Transcriptome

    Get PDF
    BACKGROUND: Cnidarians, including corals and anemones, offer unique insights into metazoan evolution because they harbor genetic similarities with vertebrates beyond that found in model invertebrates and retain genes known only from non-metazoans. Cataloging genes expressed in Acropora palmata, a foundation-species of reefs in the Caribbean and western Atlantic, will advance our understanding of the genetic basis of ecologically important traits in corals and comes at a time when sequencing efforts in other cnidarians allow for multi-species comparisons. RESULTS: A cDNA library from a sample enriched for symbiont free larval tissue was sequenced on the 454 GS-FLX platform. Over 960,000 reads were obtained and assembled into 42,630 contigs. Annotation data was acquired for 57% of the assembled sequences. Analysis of the assembled sequences indicated that 83-100% of all A. palmata transcripts were tagged, and provided a rough estimate of the total number genes expressed in our samples (~18,000-20,000). The coral annotation data contained many of the same molecular components as in the Bilateria, particularly in pathways associated with oxidative stress and DNA damage repair, and provided evidence that homologs of p53, a key player in DNA repair pathways, has experienced selection along the branch separating Cnidaria and Bilateria. Transcriptome wide screens of paralog groups and transition/transversion ratios highlighted genes including: green fluorescent proteins, carbonic anhydrase, and oxidative stress proteins; and functional groups involved in protein and nucleic acid metabolism, and the formation of structural molecules. These results provide a starting point for study of adaptive evolution in corals. CONCLUSIONS: Currently available transcriptome data now make comparative studies of the mechanisms underlying coral's evolutionary success possible. Here we identified candidate genes that enable corals to maintain genomic integrity despite considerable exposure to genotoxic stress over long life spans, and showed conservation of important physiological pathways between corals and bilaterians

    Genetic Connectivity and Conservation of Temperate and Cold-Water Habitat-Forming Corals

    No full text
    Recent explorations of rocky habitats from 40 to about 6,000 m depth disclosed the role of gorgonian and scleractinian corals as habitat formers in tropical, temperate, and polar deep waters. Deep biogenic habitats host high species richness and complexity and their conservation requires a profound understand- ing of biological and ecological features of sessile species inhabiting them, such as the habitat-forming corals. In sessile species, earliest life history stages and larval processes (e.g., reproduction mode, larval development, behavior, and feeding mode) ensure the exchange of individuals within and among subpopula- tions, supporting species and habitat resistance and resilience. Genetic studies allow investigating larval processes when direct observations cannot be used. Parameters such as genetic connectivity, gene flow, and levels of genetic diversity are essential to monitor health and resilience of populations under current and future scenarios of anthropogenic environmental changes. In this chapter a review of studies on genetic connectivity of temperate and cold-water habitat-forming corals and associated invertebrate species will be presented. Among them, two case studies, Desmophyllum dianthus, a deep-sea worldwide-distributed scleractinian, and Corallium rubrum, a harvested Mediterranean and Eastern Atlantic alcyonacean with a wide bathymetric distribution, will be discussed in detail. This chapter will also show how these studies contributed to develop, implement, and recommend future conservation strategies and management plans. Existing gaps in literature on genetic connectivity of habitat-forming corals and other invertebrates have been also stressed and discussed. Finally, a concep- tual framework for optimizing and planning effective studies on genetic connec- tivity is provided, including general recommendations on sampling design, key species and new molecular markers to use with a special emphasis on the \u201cnext- generation\u201d DNA sequencing technologies
    corecore