38 research outputs found

    Efficacy and adverse effects of intravenous lignocaine therapy in fibromyalgia syndrome

    Get PDF
    BACKGROUND: To investigate the effects of intravenous lignocaine infusions (IV lignocaine) in fibromyalgia. METHODS: Prospective study of the adverse effects of IV lignocaine in 106 patients with fibromyalgia; retrospective questionnaire study of the efficacy of IV lignocaine in 50 patients with fibromyalgia. RESULTS: Prospective study: Two major (pulmonary oedema and supraventricular tachycardia) and 42 minor side-effects were reported. None had long-term sequelae. The commonest was hypotension (17 cases). Retrospective study: Pain and a range of psychosocial measures (on single 11-point scales) improved significantly after treatment. There was no effect of the treatment on work status. The average duration of pain relief after the 6-day course of treatment was 11.5 ± 6.5 weeks. CONCLUSIONS: Intravenous lignocaine appears to be both safe and of benefit in improving pain and quality of life for patients with fibromyalgia. This needs to be confirmed in prospective randomised controlled trials

    Association between ultrasound-detected synovitis and knee pain: a population-based case-control study with both cross-sectional and follow-up data

    Get PDF
    Background: Recently an important role for synovial pathology in the initiation and progression of knee osteoarthritis (OA) has been emphasised. This study aimed to examine whether ultrasonographydetected synovial changes (USSCs) associate with knee pain (KP) in a community population. Methods: A case-control study was conducted to compare people with early KP (n=298), established KP (n=100) or no KP (n=94) at baseline. Multinomial logistic regression was used to estimate odds ratio (OR) and 95% confidence interval (CI) between groups adjusted for radiographic osteoarthritis (ROA) severity and other confounding factors. After one year 255 participants with early and established KP completed the followup questionnaire for changes in KP. Logistic regression with adjustment was used to determine predictors of KP worsening. Results: At baseline, effusion was associated with early (OR 2.64, 95%CI 1.57 to 4.45) and established KP (OR 5.07, 95%CI 2.74 to 9.38). Synovial hypertrophy was also associated with early (OR 5.43, 95%CI 2.12 to 13.92) and established KP (OR 13.27, 95%CI 4.97 to 35.43). The association with effusion diminished when adjusted for ROA. Power Doppler signal was uncommon (early KP 3%, established KP 2%, controls 0%). Baseline effusion predicted worsening of knee pain at one year (OR 1.95, 95% CI 1.05 to 3.64). However, after adjusting for ROA, the prediction was insignificant (aORs 0.95, 95%CI 0.44 to 2.02). Conclusion: US effusion and synovial hypertrophy are associated with KP, but only effusion predicts KP worsening. However, the association/prediction are not independent from ROA. Power Doppler signal is uncommon in people with KP. Further study is needed to understand whether synovitis is directly involved in different types of KP

    Vasodysfunction That Involves Renal Vasodysfunction, Not Abnormally Increased Renal Retention of Sodium, Accounts for the Initiation of Salt-Induced Hypertension

    No full text
    Prevailing theory holds that abnormally large increases in renal salt retention and cardiac output are early pathophysiologic events mediating initiation of most instances of salt-induced hypertension. This theory has come under increasing scrutiny because it is based on studies that lack measurements of sodium balance and cardiac output obtained during initiation of salt-loading in proper normal controls, i.e., salt-resistant subjects with normal blood pressure. Here we make the case for a “vasodysfunction” theory for initiation of salt-induced hypertension: In response to an increase in salt intake, a subnormal decrease in total peripheral resistance that involves a subnormal decrease in renal vascular resistance, in the absence of abnormally large increases in sodium retention and cardiac output, is the hemodynamic abnormality that usually mediates initiation of salt-induced increases in blood pressure (BP). It is the failure to normally decrease vascular resistance in response to salt loading that enables a normal increase of cardiac output to initiate the salt-induced increase in blood pressure. This theory is based on the results of properly controlled studies which consistently demonstrate that in salt-sensitive subjects, salt-loading initiates increased BP through a hemodynamic mechanism that: 1) does not usually involve early increases in sodium retention and cardiac output greater than those which occur with salt-loading in normal controls, and 2) usually involves an early failure to decrease vascular resistance to the same extent as that observed during salt-loading in normal controls. Multiple mechanisms including disturbances in nitric oxide and sympathetic nervous system activity likely underlie this subnormal vasodilatory response to salt that usually precedes and initiates salt-induced hypertension
    corecore