252 research outputs found

    Lambda and Antilambda polarization from deep inelastic muon scattering

    Full text link
    We report results of the first measurements of Lambda and Antilambda polarization produced in deep inelastic polarized muon scattering on the nucleon. The results are consistent with an expected trend towards positive polarization with increasing x_F. The polarizations of Lambda and Antilambda appear to have opposite signs. A large negative polarization for Lambda at low positive x_F is observed and is not explained by existing models.A possible interpretation is presented.Comment: 9 pages, 2 figure

    Glutamate Uptake Triggers Transporter-Mediated GABA Release from Astrocytes

    Get PDF
    Background: Glutamate (Glu) and c-aminobutyric acid (GABA) transporters play important roles in regulating neuronal activity. Glu is removed from the extracellular space dominantly by glial transporters. In contrast, GABA is mainly taken up by neurons. However, the glial GABA transporter subtypes share their localization with the Glu transporters and their expression is confined to the same subpopulation of astrocytes, raising the possibility of cooperation between Glu and GABA transport processes. Methodology/Principal Findings: Here we used diverse biological models both in vitro and in vivo to explore the interplay between these processes. We found that removal of Glu by astrocytic transporters triggers an elevation in the extracellular level of GABA. This coupling between excitatory and inhibitory signaling was found to be independent of Glu receptor-mediated depolarization, external presence of Ca2+ and glutamate decarboxylase activity. It was abolished in the presence of non-transportable blockers of glial Glu or GABA transporters, suggesting that the concerted action of these transporters underlies the process. Conclusions/Significance: Our results suggest that activation of Glu transporters results in GABA release through reversal of glial GABA transporters. This transporter-mediated interplay represents a direct link between inhibitory and excitatory neurotransmission and may function as a negative feedback combating intense excitation in pathological conditions such as epilepsy or ischemia

    Diazoxide Promotes Oligodendrocyte Precursor Cell Proliferation and Myelination

    Get PDF
    Several clinical conditions are associated with white matter injury, including periventricular white matter injury (PWMI), which is a form of brain injury sustained by preterm infants. It has been suggested that white matter injury in this condition is due to altered oligodendrocyte (OL) development or death, resulting in OL loss and hypomyelination. At present drugs are not available that stimulate OL proliferation and promote myelination. Evidence suggests that depolarizing stimuli reduces OL proliferation and differentiation, whereas agents that hyperpolarize OLs stimulate OL proliferation and differentiation. Considering that the drug diazoxide activates K(ATP) channels to hyperpolarize cells, we tested if this compound could influence OL proliferation and myelination.Studies were performed using rat oligodendrocyte precursor cell (OPC) cultures, cerebellar slice cultures, and an in vivo model of PWMI in which newborn mice were exposed to chronic sublethal hypoxia (10% O(2)). We found that K(ATP) channel components Kir 6.1 and 6.2 and SUR2 were expressed in oligodendrocytes. Additionally, diazoxide potently stimulated OPC proliferation, as did other K(ATP) activators. Diazoxide also stimulated myelination in cerebellar slice cultures. We also found that diazoxide prevented hypomyelination and ventriculomegaly following chronic sublethal hypoxia.These results identify KATP channel components in OLs and show that diazoxide can stimulate OL proliferation in vitro. Importantly we find that diazoxide can promote myelination in vivo and prevent hypoxia-induced PWMI

    Early menopause, association with tobacco smoking, coffee consumption and other lifestyle factors: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Early onset of menopause is a risk factor for several health problems. The objective was primarily to investigate the association between early menopause and current, past active and passive smoking. A second aim was to investigate the association between coffee and alcohol consumption and early menopause.</p> <p>Methods</p> <p>The present population-based cross-sectional study included a sub-sample of 2123 postmenopausal women born in 1940–41 who participated in the Oslo Health Study. Early menopause was defined as menopause occurring at an age of less than 45 years. We applied logistic regression analyses (crude and adjusted odds ratio (OR)) to examine the association between early menopause and selected lifestyle factors.</p> <p>Results</p> <p>Current smoking was significantly associated with early menopause (adj. OR, 1.59; 95% CI, 1.11–2.28). Stopping smoking more than 10 years before menopause considerably reduced the risk of early menopause (adj. OR, 0.13; 95% CI, 0.05–0.33). Total exposure to smoking (the product of number of cigarettes per day and time as a smoker) was positively related to early menopause and, at the highest doses, nearly doubled the odds (adj. OR, 1.93; 95% CI, 1.12–3.30). These data suggest a possible dose-response relationship between total exposure to smoking and early menopause, but no dose-response relationship was detected for the other variables examined. We found no significant association of coffee or alcohol consumption with early menopause. Of the lifestyle factors tested, high educational level (adj. OR, 0.50; 95% CI, 0.34–0.72) and high social participation (adj. OR, 0.60, 95% CI, 0.39–0.98) were negatively associated with early menopause.</p> <p>Conclusion</p> <p>This cross-sectional study shows an association between current smoking and early menopause. The data also suggest that the earlier a woman stops smoking the more protected she is from early menopause. Early menopause was not significantly associated with passive smoking, or alcohol or coffee consumption.</p

    Factors affecting the implementation of complex and evolving technologies: multiple case study of intensity-modulated radiation therapy (IMRT) in Ontario, Canada

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Research regarding the decision to adopt and implement technological innovations in radiation oncology is lacking. This is particularly problematic since these technologies are often complex and rapidly evolving, requiring ongoing revisiting of decisions regarding which technologies are the most appropriate to support. Variations in adoption and implementation decisions for new radiation technologies across cancer centres can impact patients' access to appropriate and innovative forms of radiation therapy. This study examines the key steps in the process of adopting and implementing intensity modulated radiation therapy (IMRT) in publicly funded cancer centres and identifies facilitating or impeding factors.</p> <p>Methods</p> <p>A multiple case study design, utilizing document analysis and key informant interviews was employed. Four cancer centres in Ontario, Canada were selected and interviews were conducted with radiation oncologists, medical physicists, radiation therapists, and senior administrative leaders.</p> <p>Results</p> <p>Eighteen key informants were interviewed. Overall, three centres made fair to excellent progress in the implementation of IMRT, while one centre achieved only limited implementation as of 2009. Key factors that influenced the extent of IMRT implementation were categorized as: 1) leadership, 2) training, expertise and standardization, 3) collaboration, 4) resources, and 5) resistance to change.</p> <p>Conclusion</p> <p>A framework for the adoption and implementation of complex and evolving technologies is presented. It identifies the key factors that should be addressed by decision-makers at specific stages of the adoption/implementation process.</p

    Physics of Neutron Star Crusts

    Get PDF
    The physics of neutron star crusts is vast, involving many different research fields, from nuclear and condensed matter physics to general relativity. This review summarizes the progress, which has been achieved over the last few years, in modeling neutron star crusts, both at the microscopic and macroscopic levels. The confrontation of these theoretical models with observations is also briefly discussed.Comment: 182 pages, published version available at <http://www.livingreviews.org/lrr-2008-10

    Transcriptomic response of the red tide dinoflagellate, Karenia brevis, to nitrogen and phosphorus depletion and addition

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The role of coastal nutrient sources in the persistence of <it>Karenia brevis </it>red tides in coastal waters of Florida is a contentious issue that warrants investigation into the regulation of nutrient responses in this dinoflagellate. In other phytoplankton studied, nutrient status is reflected by the expression levels of N- and P-responsive gene transcripts. In dinoflagellates, however, many processes are regulated post-transcriptionally. All nuclear encoded gene transcripts studied to date possess a 5' <it>trans</it>-spliced leader (SL) sequence suggestive, based on the trypanosome model, of post-transcriptional regulation. The current study therefore sought to determine if the transcriptome of <it>K. brevis </it>is responsive to nitrogen and phosphorus and is informative of nutrient status.</p> <p>Results</p> <p>Microarray analysis of N-depleted <it>K. brevis </it>cultures revealed an increase in the expression of transcripts involved in N-assimilation (nitrate and ammonium transporters, glutamine synthetases) relative to nutrient replete cells. In contrast, a transcriptional signal of P-starvation was not apparent despite evidence of P-starvation based on their rapid growth response to P-addition. To study transcriptome responses to nutrient addition, the limiting nutrient was added to depleted cells and changes in global gene expression were assessed over the first 48 hours following nutrient addition. Both N- and P-addition resulted in significant changes in approximately 4% of genes on the microarray, using a significance cutoff of 1.7-fold and p ≤ 10<sup>-4</sup>. By far, the earliest responding genes were dominated in both nutrient treatments by pentatricopeptide repeat (PPR) proteins, which increased in expression up to 3-fold by 1 h following nutrient addition. PPR proteins are nuclear encoded proteins involved in chloroplast and mitochondria RNA processing. Correspondingly, other functions enriched in response to both nutrients were photosystem and ribosomal genes.</p> <p>Conclusions</p> <p>Microarray analysis provided transcriptomic evidence for N- but not P-limitation in <it>K. brevis</it>. Transcriptomic responses to the addition of either N or P suggest a concerted program leading to the reactivation of chloroplast functions. Even the earliest responding PPR protein transcripts possess a 5' SL sequence that suggests post-transcriptional control. Given the current state of knowledge of dinoflagellate gene regulation, it is currently unclear how these rapid changes in such transcript levels are achieved.</p

    IL-6 Mediated Degeneration of Forebrain GABAergic Interneurons and Cognitive Impairment in Aged Mice through Activation of Neuronal NADPH Oxidase

    Get PDF
    BACKGROUND:Multiple studies have shown that plasma levels of the pro-inflammatory cytokine interleukin-6 (IL-6) are elevated in patients with important and prevalent adverse health conditions, including atherosclerosis, diabetes, obesity, obstructive sleep apnea, hypertension, and frailty. Higher plasma levels of IL-6, in turn, increase the risk of many conditions associated with aging including age-related cognitive decline. However, the mechanisms underlying this association between IL-6 and cognitive vulnerability remain unclear. METHODS AND FINDINGS:We investigated the role of IL-6 in brain aging in young (4 mo) and aged (24 mo) wild-type C57BL6 and genetically-matched IL-6(-/-) mice, and determined that IL-6 was necessary and sufficient for increased neuronal expression of the superoxide-producing immune enzyme, NADPH-oxidase, and this was mediated by non-canonical NFkappaB signaling. Furthermore, superoxide production by NADPH-oxidase was directly responsible for age-related loss of parvalbumin (PV)-expressing GABAergic interneurons, neurons essential for normal information processing, encoding, and retrieval in hippocampus and cortex. Targeted deletion of IL-6 or elimination of superoxide by chronic treatment with a superoxide-dismutase mimetic prevented age-related loss of PV-interneurons and reversed age-related cognitive deficits on three standard tests of spatial learning and recall. CONCLUSIONS:Present results indicate that IL-6 mediates age-related loss of critical PV-expressing GABAergic interneurons through increased neuronal NADPH-oxidase-derived superoxide production, and that rescue of these interneurons preserves cognitive performance in aging mice, suggesting that elevated peripheral IL-6 levels may be directly and mechanistically linked to long-lasting cognitive deficits in even normal older individuals. Further, because PV-interneurons are also selectively affected by commonly used anesthetic agents and drugs, our findings imply that IL-6 levels may predict adverse CNS effects in older patients exposed to these compounds through specific derangements in inhibitory interneurons, and that therapies directed at lowering IL-6 may have cognitive benefits clinically
    corecore