11 research outputs found

    Modulation of 11β-hydroxysteroid dehydrogenase as a strategy to reduce vascular inflammation

    Get PDF
    Atherosclerosis is a chronic inflammatory disease in which initial vascular damage leads to extensive macrophage and lymphocyte infiltration. Although acutely glucocorticoids suppress inflammation, chronic glucocorticoid excess worsens atherosclerosis, possibly by exacerbating systemic cardiovascular risk factors. However, glucocorticoid action within the lesion may reduce neointimal proliferation and inflammation. Glucocorticoid levels within cells do not necessarily reflect circulating levels due to pre-receptor metabolism by 11β-hydroxysteroid dehydrogenases (11β-HSDs). 11β-HSD2 converts active glucocorticoids into inert 11-keto forms. 11β-HSD1 catalyses the reverse reaction, regenerating active glucocorticoids. 11β-HSD2-deficiency/ inhibition causes hypertension, whereas deficiency/ inhibition of 11β-HSD1 generates a cardioprotective lipid profile and improves glycemic control. Importantly, 11β-HSD1-deficiency/ inhibition is atheroprotective, whereas 11β-HSD2-deficiency accelerates atherosclerosis. These effects are largely independent of systemic risk factors, reflecting modulation of glucocorticoid action and inflammation within the vasculature. Here, we consider whether evidence linking the 11β-HSDs to vascular inflammation suggests these isozymes are potential therapeutic targets in vascular injury and atherosclerosis

    Both Transient and Continuous Corticosterone Excess Inhibit Atherosclerotic Plaque Formation in APOE*3-Leiden.CETP Mice

    Get PDF
    Contains fulltext : 118079.pdf (publisher's version ) (Open Access)INTRODUCTION: The role of glucocorticoids in atherosclerosis development is not clearly established. Human studies show a clear association between glucocorticoid excess and cardiovascular disease, whereas most animal models indicate an inhibitory effect of glucocorticoids on atherosclerosis development. These animal models, however, neither reflect long-term glucocorticoid overexposure nor display human-like lipoprotein metabolism. AIM: To investigate the effects of transient and continuous glucocorticoid excess on atherosclerosis development in a mouse model with human-like lipoprotein metabolism upon feeding a Western-type diet. METHODS: Pair-housed female APOE*3-Leiden.CETP (E3L.CETP) mice fed a Western-type containing 0.1% cholesterol for 20 weeks were given corticosterone (50 microg/ml) for either 5 (transient group) or 17 weeks (continuous group), or vehicle (control group) in the drinking water. At the end of the study, atherosclerosis severity, lesion area in the aortic root, the number of monocytes adhering to the endothelial wall and macrophage content of the plaque were measured. RESULTS: Corticosterone treatment increased body weight and food intake for the duration of the treatment and increased gonadal and subcutaneous white adipose tissue weight in transient group by +35% and +31%, and in the continuous group by +140% and 110%. Strikingly, both transient and continuous corticosterone treatment decreased total atherosclerotic lesion area by -39% without lowering plasma cholesterol levels. In addition, there was a decrease of -56% in macrophage content of the plaque with continuous corticosterone treatment, and a similar trend was present with the transient treatment. CONCLUSION: Increased corticosterone exposure in mice with human-like lipoprotein metabolism has beneficial, long-lasting effects on atherosclerosis, but negatively affects body fat distribution by promoting fat accumulation in the long-term. This indicates that the increased atherosclerosis observed in humans in states of glucocorticoid excess may not be related to cortisol per se, but might be the result of complex indirect effects of cortisol

    The aldosterone-mineralocorticoid receptor pathway exerts anti-inflammatory effects in endotoxin-induced uveitis.

    Get PDF
    We have previously shown that the eye is a mineralocorticoid-sensitive organ and we now question the role of mineralocorticoid receptor (MR) in ocular inflammation. The endotoxin-induced uveitis (EIU), a rat model of human intraocular inflammation, was induced by systemic administration of lipopolysaccharide (LPS). Evaluations were made 6 and 24 hours after intraocular injection of aldosterone (simultaneous to LPS injection). Three hours after onset of EIU, the MR and the glucocorticoid metabolizing enzyme 11-beta hydroxysteroid dehydrogenase type 2 (11β-HSD2) expression were down-regulated in iris/ciliary body and the corticosterone concentration was increased in aqueous humor, altering the normal MR/glucocorticoid receptor (GR) balance. At 24 hours, the GR expression was also decreased. In EIU, aldosterone reduced the intensity of clinical inflammation in a dose-dependent manner. The clinical benefit of aldosterone was abrogated in the presence of the MR antagonist (RU26752) and only partially with the GR antagonist (RU38486). Aldosterone reduced the release of inflammatory mediators (6 and 24 hours: TNF-α, IFN-γ, MIP-1α) in aqueous humor and the number of activated microglia/macrophages. Aldosterone partly prevented the uveitis-induced MR down-regulation. These results suggest that MR expression and activation in iris/ciliary body could protect the ocular structures against damages induced by EIU
    corecore