470 research outputs found

    Influence des activitĂ©s anthropiques sur la diversitĂ© floristique des communautĂ©s vĂ©gĂ©tales de la forĂȘt marĂ©cageuse de Lokoli au Sud-BĂ©nin

    Get PDF
    La forĂȘt marĂ©cageuse de Lokoli est situĂ©e Ă  Zogbodomey au Sud-BĂ©nin et ses Produits Forestiers Non Ligneux (PFNL) constituent des sources de revenus pour les populations riveraines. L’objectif de l'Ă©tude est dedĂ©terminer l'influence de l'exploitation des PFNL sur les communautĂ©s vĂ©gĂ©tales. Sur la base de relevĂ©s phytosociologiques et des enquĂȘtes ethnobotaniques, une Ă©tude comparative a Ă©tĂ© faite sur la diversitĂ©floristique de sept communautĂ©s vĂ©gĂ©tales identifiĂ©s et des PFNL prĂ©levĂ©s. Les rĂ©sultats ont montrĂ© que la richesse spĂ©cifique Ă©tait comprise entre 50 espĂšces au niveau de la forĂȘt primaire inondĂ©e Ă  Alstonia congensiset Xylopia rubescens et 131 espĂšces au niveau de la prairie marĂ©cageuse Ă  Rhynchospora corymbosa et Ludwigia abyssinica. La richesse spĂ©cifique Ă©tait liĂ©e au degrĂ© d’hydromorphie des sols et Ă  l’intensitĂ© de la pression anthropique sur les communautĂ©s vĂ©gĂ©tales. D’aprĂšs nos rĂ©sultats, au lieu d’une Ă©volution rĂ©guliĂšre, la diversitĂ© spĂ©cifique a connu une baisse du nombre d’espĂšce au niveau de 2 communautĂ©s vĂ©gĂ©tales, la raphialeĂ  Raphia hookeri et Anthocleista vogelii et la savane marĂ©cageuse Ă  Ficus asperifolia et Paullinia pinnata. Une gestion plus rationnelle du prĂ©lĂšvement des PFNL par les exploitants doit permettre un dĂ©veloppement durable de la forĂȘt marĂ©cageuse de Lokoli.Mots clĂ©s: Produit forestier non ligneux, exploitation durable, richesse floristique, Zogbodomey, Sud-BĂ©nin

    Improving the Cost-Effectiveness of Artificial Visual Baits for Controlling the Tsetse Fly Glossina fuscipes fuscipes

    Get PDF
    Tsetse flies, which transmit sleeping sickness to humans and nagana to cattle, are commonly controlled by stationary artificial baits consisting of traps or insecticide-treated screens known as targets. In Kenya the use of electrocuting sampling devices showed that the numbers of Glossina fuscipes fuscipes (Newstead) visiting a biconical trap were nearly double those visiting a black target of 100 cm×100 cm. However, only 40% of the males and 21% of the females entered the trap, whereas 71% and 34%, respectively, alighted on the target. The greater number visiting the trap appeared to be due to its being largely blue, rather than being three-dimensional or raised above the ground. Through a series of variations of target design we show that a blue-and-black panel of cloth (0.06 m2) flanked by a panel (0.06 m2) of fine black netting, placed at ground level, would be about ten times more cost-effective than traps or large targets in control campaigns. This finding has important implications for controlling all subspecies of G. fuscipes, which are currently responsible for more than 90% of sleeping sickness cases

    Machine-Part cell formation through visual decipherable clustering of Self Organizing Map

    Full text link
    Machine-part cell formation is used in cellular manufacturing in order to process a large variety, quality, lower work in process levels, reducing manufacturing lead-time and customer response time while retaining flexibility for new products. This paper presents a new and novel approach for obtaining machine cells and part families. In the cellular manufacturing the fundamental problem is the formation of part families and machine cells. The present paper deals with the Self Organising Map (SOM) method an unsupervised learning algorithm in Artificial Intelligence, and has been used as a visually decipherable clustering tool of machine-part cell formation. The objective of the paper is to cluster the binary machine-part matrix through visually decipherable cluster of SOM color-coding and labelling via the SOM map nodes in such a way that the part families are processed in that machine cells. The Umatrix, component plane, principal component projection, scatter plot and histogram of SOM have been reported in the present work for the successful visualization of the machine-part cell formation. Computational result with the proposed algorithm on a set of group technology problems available in the literature is also presented. The proposed SOM approach produced solutions with a grouping efficacy that is at least as good as any results earlier reported in the literature and improved the grouping efficacy for 70% of the problems and found immensely useful to both industry practitioners and researchers.Comment: 18 pages,3 table, 4 figure

    Sequencing and characterization of Varicella-Zoster virus vaccine strain SuduVax

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Varicella-zoster virus (VZV) causes chickenpox in children and shingles in older people. Currently, live attenuated vaccines based on the Oka strain are available worldwide. In Korea, an attenuated VZV vaccine has been developed from a Korean isolate and has been commercially available since 1994. Despite this long history of use, the mechanism for the attenuation of the vaccine strain is still elusive. We attempted to understand the molecular basis of attenuation mechanism by full genome sequencing and comparative genomic analyses of the Korean vaccine strain SuduVax.</p> <p>Results</p> <p>SuduVax was found to contain a genome that was 124,759 bp and possessed 74 open reading frames (ORFs). SuduVax was genetically most close to Oka strains and these Korean-Japanese strains formed a strong clade in phylogenetic trees. SuduVax, similar to the Oka vaccine strains, underwent T- > C substitution at the stop codon of ORF0, resulting in a read-through mutation to code for an extended form of ORF0 protein. SuduVax also shared certain deletion and insertion mutations in ORFs 17, 29, 56 and 60 with Oka vaccine strains and some clinical strains.</p> <p>Conclusions</p> <p>The Korean VZV vaccine strain SuduVax is genetically similar to the Oka vaccine strains. Further comparative genomic and bioinformatics analyses will help to elucidate the molecular basis of the attenuation of the VZV vaccine strains.</p

    HCV IRES manipulates the ribosome to promote the switch from translation initiation to elongation.

    Get PDF
    The internal ribosome entry site (IRES) of the hepatitis C virus (HCV) drives noncanonical initiation of protein synthesis necessary for viral replication. Functional studies of the HCV IRES have focused on 80S ribosome formation but have not explored its role after the 80S ribosome is poised at the start codon. Here, we report that mutations of an IRES domain that docks in the 40S subunit's decoding groove cause only a local perturbation in IRES structure and result in conformational changes in the IRES-rabbit 40S subunit complex. Functionally, the mutations decrease IRES activity by inhibiting the first ribosomal translocation event, and modeling results suggest that this effect occurs through an interaction with a single ribosomal protein. The ability of the HCV IRES to manipulate the ribosome provides insight into how the ribosome's structure and function can be altered by bound RNAs, including those derived from cellular invaders

    UT-B-deficient mice develop renal dysfunction and structural damage

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Urea transporter UT-B is the major urea transporter in erythrocytes and the descending vasa recta in the kidney. In this study, we investigated the effects of long-term UT-B deficiency on functional and structural defect in the kidney of 16-and 52-week-old UT-B-null mice.</p> <p>Methods</p> <p>UT-B-knockout mice were generated by targeted gene disruption and lacked UT-B protein expression in all organs. The urinary concentrating ability of mice was studied in terms of daily urine output, urine osmolality, and urine and plasma chemistries. Changes in renal morphology were evaluated by hematoxylin and eosin staining.</p> <p>Results</p> <p>The UT-B-null mice showed defective urine concentrating ability. The daily urine output in UT-B-null mice (2.5 ± 0.1 ml) was 60% higher and urine osmolality (985 ± 151 mosm) was significantly lower than that in wild-type mice (1463 ± 227 mosm). The 52-week-old UT-B-null mice exhibited polyuria after water deprivation, although urine osmolality was increased. At 52 weeks of age, over 31% of UT-B-null mice exhibited renal medullary atrophy because of severe polyuria and hydronephrosis.</p> <p>Conclusions</p> <p>Long-term UT-B deficiency causes severe renal dysfunction and structural damage. These results demonstrate the important role of UT-B in countercurrent exchange and urine concentration.</p

    Murine Missing in Metastasis (MIM) Mediates Cell Polarity and Regulates the Motility Response to Growth Factors

    Get PDF
    Missing in metastasis (MIM) is a member of the inverse BAR-domain protein family, and in vitro studies have implied MIM plays a role in deforming membrane curvature into filopodia-like protrusions and cell dynamics. Yet, the physiological role of the endogenous MIM in mammalian cells remains undefined.We have examined mouse embryonic fibroblasts (MEFs) derived from mice in which the MIM locus was targeted by a gene trapping vector. MIM(-/-) MEFs showed a less polarized architecture characterized by smooth edges and fewer cell protrusions as compared to wild type cells, although the formation of filopodia-like microprotrusions appeared to be normal. Immunofluorescent staining further revealed that MIM(-/-) cells were partially impaired in the assembly of stress fibers and focal adhesions but were enriched with transverse actin filaments at the periphery. Poor assembly of stress fibers was apparently correlated with attenuation of the activity of Rho GTPases and partially relieved upon overexpressing of Myc-RhoA(Q63L), a constitutively activated RhoA mutant. MIM(-/-) cells were also spread less effectively than wild type cells during attachment to dishes and substratum. Upon treatment with PDGF MIM(-/-) cells developed more prominent dorsal ruffles along with increased Rac1 activity. Compared to wild type cells, MIM(-/-) cells had a slower motility in the presence of a low percentage of serum-containing medium but migrated normally upon adding growth factors such as 10% serum, PDGF or EGF. MIM(-/-) cells were also partially impaired in the internalization of transferrin, fluorescent dyes, foreign DNAs and PDGF receptor alpha. On the other hand, the level of tyrosine phosphorylation of PDGF receptors was more elevated in MIM depleted cells than wild type cells upon PDGF treatment.Our data suggests that endogenous MIM protein regulates globally the cell architecture and endocytosis that ultimately influence a variety of cellular behaviors, including cell polarity, motility, receptor signaling and membrane ruffling

    The development of a protoplanetary disk from its natal envelope

    Full text link
    Class 0 protostars, the youngest type of young stellar objects, show many signs of rapid development from their initial, spheroidal configurations, and therefore are studied intensively for details of the formation of protoplanetary disks within protostellar envelopes. At millimetre wavelengths, kinematic signatures of collapse have been observed in several such protostars, through observations of molecular lines that probe their outer envelopes. It has been suggested that one or more components of the proto-multiple system NGC 1333-IRAS 4 (refs 1, 2) may display signs of an embedded region that is warmer and denser than the bulk of the envelope(3,4). Here we report observations that reveal details of the core on Solar System dimensions. We detect in NGC 1333-IRAS 4B a rich emission spectrum of H2O, at wavelengths 20-37 mu m, which indicates an origin in extremely dense, warm gas. We can model the emission as infall from a protostellar envelope onto the surface of a deeply embedded, dense disk, and therefore see the development of a protoplanetary disk. This is the only example of mid-infrared water emission from a sample of 30 class 0 objects, perhaps arising from a favourable orientation; alternatively, this may be an early and short-lived stage in the evolution of a protoplanetary disk.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62894/1/nature06087.pd

    Targeting DNA-PKcs and ATM with miR-101 Sensitizes Tumors to Radiation

    Get PDF
    Radiotherapy kills tumor-cells by inducing DNA double strand breaks (DSBs). However, the efficient repair of tumors frequently prevents successful treatment. Therefore, identifying new practical sensitizers is an essential step towards successful radiotherapy. In this study, we tested the new hypothesis: identifying the miRNAs to target DNA DSB repair genes could be a new way for sensitizing tumors to ionizing radiation.HERE, WE CHOSE TWO GENES: DNA-PKcs (an essential factor for non-homologous end-joining repair) and ATM (an important checkpoint regulator for promoting homologous recombination repair) as the targets to search their regulating miRNAs. By combining the database search and the bench work, we picked out miR-101. We identified that miR-101 could efficiently target DNA-PKcs and ATM via binding to the 3'- UTR of DNA-PKcs or ATM mRNA. Up-regulating miR-101 efficiently reduced the protein levels of DNA-PKcs and ATM in these tumor cells and most importantly, sensitized the tumor cells to radiation in vitro and in vivo.These data demonstrate for the first time that miRNAs could be used to target DNA repair genes and thus sensitize tumors to radiation. These results provide a new way for improving tumor radiotherapy
    • 

    corecore