48 research outputs found
Re-examining the role of benzodiazepines in the treatment of schizophrenia: A systematic review
Supervisory Fuzzy Cognitive Map Structure for Triage Assessment and Decision Support in the Emergency Department
A new method to quantify macroalgae and a practical sampler for experimentation in lotic habitats
Os estudos experimentais em rios e riachos são extremamente difíceis de serem executados, visto que as condições desses ambientes são muito complexas e proporcionam um alto nível de heterogeneidade, o que dificulta o controle e a padronização precisa das variáveis. Nesse contexto, um prático amostrador foi desenvolvido para facilitar a execução de projetos de pesquisas envolvendo comunidades bentônicas de ambientes lóticos, além de constituir uma nova técnica não destrutiva para quantificação das macroalgas tipicamente encontradas nesses habitats. O amostrador consiste de um tubo de acrílico de seção quadrada, pelo qual a água corrente flui normalmente em seu interior. Tal estrutura porta uma placa de vidro removível com área conhecida e permite simular diversas situações ecológicas, variando tanto as condições abióticas como as bióticas, além de amenizar as diferenças entre as características ambientais a que está submetido cada um dos amostradores. Diversamente, a nova técnica consiste na captura de imagens digitais que permitem o acompanhamento temporal de uma mesma comunidade de macroalgas em desenvolvimento e uma quantificação mais precisa quando comparada com técnicas amplamente aplicadas na área. O amostrador é fácil de construir e as imagens são simples para quantificar, permitindo a detecção de variações espaço-temporais na riqueza e abundância das comunidades investigadas.Experimental studies in rivers and streams are extremely difficult to run due to the fact that the conditions of these environments are very complex and provide a high level of heterogeneity, which hinders the precise control and standardization of variables. In this study, we present a practical sampler that was designed to make it easier to conduct research projects involving benthic communities of lotic environments, as well as a new nondestructive technique for quantification of the macroalgal communities typically found in these habitats. The sampler consists of an acrylic square tube in which water flows normally inside. This structure carries a removable glass plaque with a known area and can simulate various ecological situations by changing both biotic and abiotic conditions. Thus, it can mitigate the differences between environmental characteristics where each sampler is exposed. The new technique involves capturing digital images that can monitor a unique macroalgal community in development throughout time and a more precise quantification when compared with other techniques that are widely applied. The sampler is easy to build and the images simple to quantify, allowing the detection of spatial and temporal variations in richness and abundance of investigated communities.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Universidade Estadual Paulista Faculdade de Ciências e Letras de AssisUniversidade Federal da Integração Latino-AmericanaUniversidade Estadual Paulista Faculdade de Ciências e Letras de Assi
A New Multiphysics Model for the Physiological Responses of Vascular Endothelial Cells to Fluid Shear Stress
Transitional Flow in a Cylindrical Flow Chamber for Studies at the Cellular Level
Fluid shear stress is an important regulator of vascular and endothelial cell (EC) functions. Its effect is dependent not only on magnitude but also on flow type. Although laminar flow predominates in the vasculature, transitional flow can occur and is thought to play a role in vascular diseases. While a great deal is known about the mechanisms and signaling cascades through which laminar shear stress regulates cells, little is known on how transitional shear stress regulates cells. To better understand the response of endothelial cells to transitional shear stress, a novel cylindrical flow chamber was designed to expose endothelial cells to a transitional flow environment similar to that found in vivo. The velocity profiles within the transitional flow chamber at Reynolds numbers 2200 and 3000 were measured using laser Doppler anemometry (LDA). At both Reynolds numbers, the velocity profiles are blunt (non-parabolic) with fluctuations larger than 5% of the velocity at the center of the pipe indicating the flows are transitional. Based on near wall velocity measurements and well established data for flow at these Reynolds numbers, the wall shear stress was estimated to be 3–4 and 5–6 dynes/cm(2) for Reynolds number 2200 and 3000, respectively. In contrast to laminar shear stress, no cell alignment was observed under transitional shear stress at both Reynolds numbers. However, transitional shear stress at the higher Reynolds number caused cell elongation similar to that of laminar shear stress at 3 dynes/cm(2). The fluctuating component of the wall shear stress may be responsible for these differences. The transitional flow chamber will facilitate cellular studies to identify the mechanisms through which transitional shear stress alters EC biology, which will assist in the development of vascular therapeutic treatments
