59 research outputs found
Shape models and physical properties of asteroids
Despite the large amount of high quality data generated in recent space
encounters with asteroids, the majority of our knowledge about these objects
comes from ground based observations. Asteroids travelling in orbits that are
potentially hazardous for the Earth form an especially interesting group to be
studied. In order to predict their orbital evolution, it is necessary to
investigate their physical properties. This paper briefly describes the data
requirements and different techniques used to solve the lightcurve inversion
problem. Although photometry is the most abundant type of observational data,
models of asteroids can be obtained using various data types and techniques. We
describe the potential of radar imaging and stellar occultation timings to be
combined with disk-integrated photometry in order to reveal information about
physical properties of asteroids.Comment: From Assessment and Mitigation of Asteroid Impact Hazards boo
Collisional Velocities and Rates in Resonant Planetesimal Belts
We consider a belt of small bodies around a star, captured in one of the
external or 1:1 mean-motion resonances with a massive perturber. The objects in
the belt collide with each other. Combining methods of celestial mechanics and
statistical physics, we calculate mean collisional velocities and collisional
rates, averaged over the belt. The results are compared to collisional
velocities and rates in a similar, but non-resonant belt, as predicted by the
particle-in-a-box method. It is found that the effect of the resonant lock on
the velocities is rather small, while on the rates more substantial. The
collisional rates between objects in an external resonance are by about a
factor of two higher than those in a similar belt of objects not locked in a
resonance. For Trojans under the same conditions, the collisional rates may be
enhanced by up to an order of magnitude. Our results imply, in particular,
shorter collisional lifetimes of resonant Kuiper belt objects in the solar
system and higher efficiency of dust production by resonant planetesimals in
debris disks around other stars.Comment: 31 pages, 11 figures (some of them heavily compressed to fit into
arxiv-maximum filesize), accepted for publication at "Celestial Mechanics and
Dynamical Astronomy
Debris disk size distributions: steady state collisional evolution with P-R drag and other loss processes
We present a new scheme for determining the shape of the size distribution,
and its evolution, for collisional cascades of planetesimals undergoing
destructive collisions and loss processes like Poynting-Robertson drag. The
scheme treats the steady state portion of the cascade by equating mass loss and
gain in each size bin; the smallest particles are expected to reach steady
state on their collision timescale, while larger particles retain their
primordial distribution. For collision-dominated disks, steady state means that
mass loss rates in logarithmic size bins are independent of size. This
prescription reproduces the expected two phase size distribution, with ripples
above the blow-out size, and above the transition to gravity-dominated
planetesimal strength. The scheme also reproduces the expected evolution of
disk mass, and of dust mass, but is computationally much faster than evolving
distributions forward in time. For low-mass disks, P-R drag causes a turnover
at small sizes to a size distribution that is set by the redistribution
function (the mass distribution of fragments produced in collisions). Thus
information about the redistribution function may be recovered by measuring the
size distribution of particles undergoing loss by P-R drag, such as that traced
by particles accreted onto Earth. Although cross-sectional area drops with
1/age^2 in the PR-dominated regime, dust mass falls as 1/age^2.8, underlining
the importance of understanding which particle sizes contribute to an
observation when considering how disk detectability evolves. Other loss
processes are readily incorporated; we also discuss generalised power law loss
rates, dynamical depletion, realistic radiation forces and stellar wind drag.Comment: Accepted for publication by Celestial Mechanics and Dynamical
Astronomy (special issue on EXOPLANETS
Origin and Evolution of Saturn's Ring System
The origin and long-term evolution of Saturn's rings is still an unsolved
problem in modern planetary science. In this chapter we review the current
state of our knowledge on this long-standing question for the main rings (A,
Cassini Division, B, C), the F Ring, and the diffuse rings (E and G). During
the Voyager era, models of evolutionary processes affecting the rings on long
time scales (erosion, viscous spreading, accretion, ballistic transport, etc.)
had suggested that Saturn's rings are not older than 100 My. In addition,
Saturn's large system of diffuse rings has been thought to be the result of
material loss from one or more of Saturn's satellites. In the Cassini era, high
spatial and spectral resolution data have allowed progress to be made on some
of these questions. Discoveries such as the ''propellers'' in the A ring, the
shape of ring-embedded moonlets, the clumps in the F Ring, and Enceladus' plume
provide new constraints on evolutionary processes in Saturn's rings. At the
same time, advances in numerical simulations over the last 20 years have opened
the way to realistic models of the rings's fine scale structure, and progress
in our understanding of the formation of the Solar System provides a
better-defined historical context in which to understand ring formation. All
these elements have important implications for the origin and long-term
evolution of Saturn's rings. They strengthen the idea that Saturn's rings are
very dynamical and rapidly evolving, while new arguments suggest that the rings
could be older than previously believed, provided that they are regularly
renewed. Key evolutionary processes, timescales and possible scenarios for the
rings's origin are reviewed in the light of tComment: Chapter 17 of the book ''Saturn After Cassini-Huygens'' Saturn from
Cassini-Huygens, Dougherty, M.K.; Esposito, L.W.; Krimigis, S.M. (Ed.) (2009)
537-57
Design of economically optimal zero-defect acceptance sampling with rectification when diagnosis errors are present
End Products of Cometary Evolution: Cometary Origin of Earth-Crossing Bodies of Asteroidal Appearance
AbstractBecause there is no necessary connection between the time required to remove the volatile component of a cometary nucleus by solar heating (physical lifetime) and the dynamical lifetime of a comet, it is possible that a comet may evolve into an observable object of asteroidal appearance. Almost all comets have dynamical lifetimes much shorter than their physical lifetimes and in these cases complete loss of volatiles will not occur. Mechanisms do exist, however, whereby a small but significant fraction of comets will have longer dynamical lifetimes, permitting them to evolve first into Jupiter-family short period comets and then into comets with relatively safe decoupled orbits interior to Jupiter’s orbit. Observed Jupiter-family objects of asteroidal appearance (e.g., 1983SA) are much more likely to be of cometary rather than asteroidal origin. “Decoupling” is facilitated by several mechanisms: perturbations by the terrestrial planets, perturbations by Jupiter and the other giant planets (including resonant perturbations) and non-gravitational orbital changes caused by the loss of gas and dust from the comet. The dynamical time scale for decoupling is probably 105–106 years and almost all decoupled comets are likely to be of asteroidal appearance. Once decoupled, the orbits of the resulting Apollo-Amor objects will evolve on a longer (107–108 year) time scale, and the orbital evidence for these objects having originally been comets rather than asteroids will nearly disappear. Statistically, however, a large fraction of the bodies in deep Earth-crossing orbits with semi-major axes ≳ 2.2 AU are likely to be cometary objects in orbits that have not yet diffused into the steady state distribution. For plausible values of the relevant parameters, estimates can be made of the number of cometary Apollo-Amor “asteroids,” the observed number of Earthcrossing active and inactive short period comets, and the production rate of short period comets. These estimates are compatible with other theoretical and observational inferences that suggest the presence of a significant population of Apollo objects that formerly were active comets.</jats:p
- …
