475 research outputs found

    ELECTROSTATIC BODY-MOTION REGISTRATION AND THE HUMAN ANTENNA-RECEIVER EFFECT: A NEW METHOD FOR INVESTIGATING INTERPERSONAL DYNAMICAL ENERGY SYSTEM INTERACTIONS

    Get PDF
    This paper documents that it is possible to measure electromagnetic fields created by physical movements of the human body-termed electrostatic body-motion effects-using readily available EEG amplifiers, and that it possible to measure the human body's capability to serve as an antenna and/or receiver for these electrostatic movements-termed the human antenna-receiver effect. Following the observation by Green et al (1991)1 that small body-motions could be detected by electrometers attached to copper walls, three experiments were conducted measuring the effects of hand-motions and foot-motions using DC amplifiers (the Synamps System by Neuroscan). Clear hand-motion and foot-motion effects could be recorded using a standard electrode box as an antenna. The electrostatic motion effect was attenuated as a function of distance of the motions from the electrode box, and by placing a wire mesh shield over the electrode box. The human body was discovered to funcrion as a strong antenna and/or receiver for electrostatic body-motions. The findings indicate that electrostatic body-motions and the human antenna-receiver effect are easily measurable, and may serve as a new method for investigating interpersonal dynamic energy system interactions in psychology, medicine and healing

    Dynamical aspects of quantum entanglement for weakly coupled kicked tops

    Full text link
    We investigate how the dynamical production of quantum entanglement for weakly coupled, composite quantum systems is influenced by the chaotic dynamics of the corresponding classical system, using coupled kicked tops. The linear entropy for the subsystem (a kicked top) is employed as a measure of entanglement. A perturbative formula for the entanglement production rate is derived. The formula contains a correlation function that can be evaluated only from the information of uncoupled tops. Using this expression and the assumption that the correlation function decays exponentially which is plausible for chaotic tops, it is shown that {\it the increment of the strength of chaos does not enhance the production rate of entanglement} when the coupling is weak enough and the subsystems (kicked tops) are strongly chaotic. The result is confirmed by numerical experiments. The perturbative approach is also applied to a weakly chaotic region, where tori and chaotic sea coexist in the corresponding classical phase space, to reexamine a recent numerical study that suggests an intimate relationship between the linear stability of the corresponding classical trajectory and the entanglement production rate.Comment: 16 pages, 11 figures, submitted to Phys. Rev.

    Collisionless hydrodynamics for 1D motion of inhomogeneous degenerate electron gases: equivalence of two recent descriptions

    Full text link
    Recently I. Tokatly and O. Pankratov (''TP'', Phys. Rev. B 60, 15550 (1999)) used velocity moments of a semiclassical kinetic equation to derive a hydrodynamic description of electron motion in a degenerate electron gas. Independently, the present authors (Theochem 501-502, 327 (2000)) used considerations arising from the Harmonic Potential Theorem (Phys. Rev. Lett. 73, 2244 (1994)) to generate a new form of high-frequency hydrodynamics for inhomogeneous degenerate electron gases (HPT-N3 hydrodynamics). We show here that TP hydrodynamics yields HPT-N3 hydrodynamics when linearized about a Thomas-Fermi groundstate with one-dimensional spatial inhomnogeneity.Comment: 17p

    Physics of Solar Prominences: I - Spectral Diagnostics and Non-LTE Modelling

    Full text link
    This review paper outlines background information and covers recent advances made via the analysis of spectra and images of prominence plasma and the increased sophistication of non-LTE (ie when there is a departure from Local Thermodynamic Equilibrium) radiative transfer models. We first describe the spectral inversion techniques that have been used to infer the plasma parameters important for the general properties of the prominence plasma in both its cool core and the hotter prominence-corona transition region. We also review studies devoted to the observation of bulk motions of the prominence plasma and to the determination of prominence mass. However, a simple inversion of spectroscopic data usually fails when the lines become optically thick at certain wavelengths. Therefore, complex non-LTE models become necessary. We thus present the basics of non-LTE radiative transfer theory and the associated multi-level radiative transfer problems. The main results of one- and two-dimensional models of the prominences and their fine-structures are presented. We then discuss the energy balance in various prominence models. Finally, we outline the outstanding observational and theoretical questions, and the directions for future progress in our understanding of solar prominences.Comment: 96 pages, 37 figures, Space Science Reviews. Some figures may have a better resolution in the published version. New version reflects minor changes brought after proof editin

    The roles of the formal and informal sectors in the provision of effective science education

    Get PDF
    For many years, formal school science education has been criticised by students, teachers, parents and employers throughout the world. This article presents an argument that a greater collaboration between the formal and the informal sector could address some of these criticisms. The causes for concern about formal science education are summarised and the major approaches being taken to address them are outlined. The contributions that the informal sector currently makes to science education are identified. It is suggested that the provision of an effective science education entails an enhanced complementarity between the two sectors. Finally, there is a brief discussion of the collaboration and communication still needed if this is to be effective

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society

    Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run

    Get PDF
    Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society
    corecore