53 research outputs found

    A pulse transformer for a 10 MW klystron power supply

    No full text
    The design and test results of the Pulse Transformer (PT) for the klystron with a voltage of 120 kV, klystron current of 130 A and a pulse duration of 1.4 ms is presented. The PT design was realized with taking into account the following requirements: no edge effect on the secondary winding; no overvoltage along the secondary winding at the klystron breakdown; random high voltage breakdowns may occur only between metal parts, not on the windings; the sharp voltage edge applied to the primary winding should not cause a turn-to-turn overvoltage

    Evolution of the Charrs, Genus Salvelinus (Salmonidae). 1. Origins and Expansion of the Species

    No full text

    Observation of triple J/ψ meson production in proton-proton collisions

    No full text
    Protons consist of three valence quarks, two up-quarks and one down-quark, held together by gluons and a sea of quark-antiquark pairs. Collectively, quarks and gluons are referred to as partons. In a proton-proton collision, typically only one parton of each proton undergoes a hard scattering – referred to as single-parton scattering – leaving the remainder of each proton only slightly disturbed. Here, we report the study of double- and triple-parton scatterings through the simultaneous production of three J/ψ mesons, which consist of a charm quark-antiquark pair, in proton-proton collisions recorded with the CMS experiment at the Large Hadron Collider. We observed this process – reconstructed through the decays of J/ψ mesons into pairs of oppositely charged muons – with a statistical significance above five standard deviations. We measured the inclusive fiducial cross-section to be 272−104+141(stat)±17(syst)fb, and compared it to theoretical expectations for triple-J/ψ meson production in single-, double- and triple-parton scattering scenarios. Assuming factorization of multiple hard-scattering probabilities in terms of single-parton scattering cross-sections, double- and triple-parton scattering are the dominant contributions for the measured process

    Search for new Higgs bosons via same-sign top quark pair production in association with a jet in proton-proton collisions at s=13TeV

    No full text
    A search is presented for new Higgs bosons in proton-proton (pp) collision events in which a same-sign top quark pair is produced in association with a jet, via the pp→tH/A→ttc‾ and pp→tH/A→ttu‾ processes. Here, H and A represent the extra scalar and pseudoscalar boson, respectively, of the second Higgs doublet in the generalized two-Higgs-doublet model (g2HDM). The search is based on pp collision data collected at a center-of-mass energy of 13 TeV with the CMS detector at the LHC, corresponding to an integrated luminosity of 138fb−1. Final states with a same-sign lepton pair in association with jets and missing transverse momentum are considered. New Higgs bosons in the 200–1000 GeV mass range and new Yukawa couplings between 0.1 and 1.0 are targeted in the search, for scenarios in which either H or A appear alone, or in which they coexist and interfere. No significant excess above the standard model prediction is observed. Exclusion limits are derived in the context of the g2HDM

    Measurement of the tt¯ charge asymmetry in events with highly Lorentz-boosted top quarks in pp collisions at s=13 TeV

    No full text
    The measurement of the charge asymmetry in top quark pair events with highly Lorentz-boosted top quarks decaying to a single lepton and jets is presented. The analysis is performed using proton-proton collisions at s=13TeV with the CMS detector at the LHC and corresponding to an integrated luminosity of 138 fb−1. The selection is optimized for top quarks produced with large Lorentz boosts, resulting in nonisolated leptons and overlapping jets. The top quark charge asymmetry is measured for events with a tt¯ invariant mass larger than 750 GeV and corrected for detector and acceptance effects using a binned maximum likelihood fit. The measured top quark charge asymmetry of (0.42−0.69+0.64)% is in good agreement with the standard model prediction at next-to-next-to-leading order in quantum chromodynamic perturbation theory with next-to-leading-order electroweak corrections. The result is also presented for two invariant mass ranges, 750–900 and >900GeV

    Study of azimuthal anisotropy of ϒ(1S) mesons in pPb collisions at sNN = 8.16 TeV

    No full text
    The azimuthal anisotropy of Image 1 mesons in high-multiplicity proton-lead collisions is studied using data collected by the CMS experiment at a nucleon-nucleon center-of-mass energy of 8.16TeV. The Image 1 mesons are reconstructed using their dimuon decay channel. The anisotropy is characterized by the second Fourier harmonic coefficients, found using a two-particle correlation technique, in which the Image 1 mesons are correlated with charged hadrons. A large pseudorapidity gap is used to suppress short-range correlations. Nonflow contamination from the dijet background is removed using a low-multiplicity subtraction method, and the results are presented as a function of Image 1 transverse momentum. The azimuthal anisotropies are smaller than those found for charmonia in proton-lead collisions at the same collision energy, but are consistent with values found for Image 1 mesons in lead-lead interactions at a nucleon-nucleon center-of-mass energy of 5.02 TeV
    corecore