7 research outputs found

    Predicting F2D(3) from the dipole cross-section

    Get PDF
    We employ a parameterisation of the proton dipole cross section previously extracted from electroproduction and photoproduction data to predict the diffractive structure function F2D(3)(Q^2, beta, xpom). Comparison with HERA H1 data yields good agreement.Comment: 5 pages,4 figures, Latex2e, uses espcrc1.sty. Presented at "Hadron 99" Beijing, August 1999. Reference added, erroneous citation correcte

    Unitarity Corrections to the Proton Structure Functions through the Dipole Picture

    Full text link
    We study the dipole picture for the description of the deep inelastic scattering, focusing on the structure functions which are driven directly by the gluon distribution. One performs estimates using the effective dipole cross section given by the Glauber-Mueller approach in QCD, which encodes the corrections due to the unitarity effects associated with the saturation phenomenon. We also address issues about frame invariance of the calculations when analysing the observables.Comment: 16 pages, 8 figures. Version to be published in Phys. Rev.
    corecore