212 research outputs found

    OEDIPUS: Onium Evolution, Dipole Interaction and Perturbative Unitarisation Simulation

    Full text link
    A Monte Carlo simulation program is presented which can be used to determine the small-xx evolution of a heavy onium using Mueller's colour dipole formulation, giving the full distribution of dipoles in rapidity and impact parameter. Routines are also provided which calculate onium-onium scattering amplitudes between individual pairs of onium configurations, making it possible to establish the contribution of multiple pomeron exchange terms to onium-onium scattering (the unitarisation corrections).Comment: 21 pages LaTeX2e. Postscript available from http://www.hep.phy.cam.ac.uk/theory/papers and program available from ftp://axpf.hep.phy.cam.ac.uk/pub/theory/oedipus.tar.g

    Large multiplicity fluctuations and saturation effects in onium collisions

    Get PDF
    This paper studies two related questions in high energy onium-onium scattering: the probability of producing an unusually large number of particles in a collision, where it is found that the cross section for producing a central multiplicity proportional to kk should decrease exponentially in k\sqrt{k}. Secondly, the nature of gluon (dipole) evolution when dipole densities become so high that saturation effects due to dipole-dipole interactions become important: measures of saturation are developed to help understand when saturation becomes important, and further information is obtained by exploiting changes of frame, which interchange unitarity and saturation corrections.Comment: 30 pages LaTeX2e, 11 figures included using epsfig. Compressed postscript of whole paper also available at http://www.hep.phy.cam.ac.uk/theory/papers

    Deformed Spectral Representation of the BFKL Kernel and the Bootstrap for Gluon Reggeization

    Full text link
    We investigate the space of functions in which the BFKL kernel acts. For the amplitudes which describe the scattering of colorless projectiles it is convenient to define, in transverse coordinates, the Moebius space in which the solutions to the BFKL equation vanish as the coordinates of the two reggeized gluons coincide. However, in order to fulfill the bootstrap relation for the BFKL kernel it is necessary to modify the space of functions. We define and investigate a new space of functions and show explicitly that the bootstrap relation is valid for the corresponding spectral form of the kernel. We calculate the generators of the resulting deformed representation of the sl(2,C) algebra.Comment: 22 pages, 1 figur

    Multiplicity distribution of colour dipoles at small~xx

    Get PDF
    The colour dipole multiplicity distribution is analysed for the wave function of a heavy onium state at small xx. Numerical results for the average multiplicity and the effect of cutoffs on its power growth are presented. Then, the full multiplicity distribution is analysed: the second multiplicity moment is derived and the tail of the distribution is shown to behave as exp⁡(−log⁡2n)\exp(-\log^2 n). These results are confirmed by a Monte Carlo simulation which also gives the fluctuations in the spatial density of dipoles.Comment: submitted as uuencoded postscript file of whole paper: 14 pages with 5 figures. Postscript also available from http://www.hep.phy.cam.ac.uk/theory/papers/index.htm

    Colored Spin Systems, BKP Evolution and finite N_c effects

    Full text link
    Even within the framework of the leading logarithmic approximation the eigenvalues of the BKP kernel for states of more than three reggeized gluons are unknown in general, contrary to the planar limit case where the problem becomes integrable. We consider a 4-gluon kernel for a finite number of colors and define some simple toy models for the configuration space dynamics, which are directly solvable with group theoretical methods. Then we study the dependence of the spectrum of these models with respect to the number of colors and make comparisons with the large limit case.Comment: 17 pages, 4 figures, references update, to appear on EPJ

    Non-linear QCD dynamics in two-photon interactions at high energies

    Get PDF
    Perturbative QCD predicts that the growth of the gluon density at high energies should saturate, forming a Color Glass Condensate (CGC), which is described in mean field approximation by the Balitsky-Kovchegov (BK) equation. In this paper we study the γγ\gamma \gamma interactions at high energies and estimate the main observables which will be probed at future linear colliders using the color dipole picture. We discuss in detail the dipole - dipole cross section and propose a new relation between this quantity and the dipole scattering amplitude. The total γγ\gamma \gamma, γ∗γ∗\gamma^{*} \gamma^{*} cross-sections and the real photon structure function F2γ(x,Q2)F_2^{\gamma}(x,Q^2) are calculated using the recent solution of the BK equation with running coupling constant and the predictions are compared with those obtained using phenomenological models for the dipole-dipole cross section and scattering amplitude. We demonstrate that these models are able to describe the LEP data at high energies, but predict a very different behavior for the observables at higher energies. Therefore we conclude that the study of γγ\gamma \gamma interactions can be useful to constrain the QCD dynamics.Comment: 11 pages, 5 figures. Version to be published in European Physical Journal

    Decomposition of the QCD String into Dipoles and Unintegrated Gluon Distributions

    Get PDF
    We present the perturbative and non-perturbative QCD structure of the dipole-dipole scattering amplitude in momentum space. The perturbative contribution is described by two-gluon exchange and the non-perturbative contribution by the stochastic vacuum model which leads to confinement of the quark and antiquark in the dipole via a string of color fields. This QCD string gives important non-perturbative contributions to high-energy reactions. A new structure different from the perturbative dipole factors is found in the string-string scattering amplitude. The string can be represented as an integral over stringless dipoles with a given dipole number density. This decomposition of the QCD string into dipoles allows us to calculate the unintegrated gluon distribution of hadrons and photons from the dipole-hadron and dipole-photon cross section via kT-factorization.Comment: 43 pages, 14 figure

    Nuclear shadowing at low Q^2

    Get PDF
    We re-examine the role of vector meson dominance in nuclear shadowing at low Q^2. We find that models which incorporate both vector meson and partonic mechanisms are consistent with both the magnitude and the Q^2 slope of the shadowing data.Comment: 7 pages, 2 figures; to appear in Phys. Rev.

    Coherent QCD phenomena in the Coherent Pion-Nucleon and Pion-Nucleus Production of Two Jets at High Relative Momenta

    Full text link
    We use QCD to compute the cross section for coherent production of a di-jet (treated as a qqˉq\bar q moving at high relative transverse momentum,Îșt\kappa_t ). In the target rest frame,the space-time evolution of this reaction is dominated by the process in which the high Îșt\kappa_t qqˉq\bar q component of the pion wave function is formed before reaching the target. It then interacts through two gluon exchange. In the approximation of keeping the leading order in powers of αs\alpha_s and all orders in αsln⁥(Îșt2/k02),\alpha_{s}\ln(\kappa_{t}^2/k_{0}^2), the amplitudes for other processes are shown to be smaller at least by a power of αs\alpha_{s}. The resulting dominant amplitude is proportional to z(1−z)Îșt−4z(1-z) \kappa_t^{-4} (zz is the fraction light-cone(+)momentum carried by the quark in the final state) times the skewed gluon distribution of the target. For the pion scattering by a nuclear target, this means that at fixed xN=2Îșt2/sx_{N}= 2\kappa_{t}^2/s (but Îșt2→∞\kappa_{t}^2\to \infty) the nuclear process in which there is only a single interaction is the most important one to contribute to the reaction. Thus in this limit color transparency phenomena should occur.These findings are in accord with E971 experiment at FNAL. We also re-examine a potentially important nuclear multiple scattering correction which is positive and ∝A1/3/Îșt4\propto A^{1/3}/\kappa_t^4. The meaning of the signal obtained from the experimental measurement of pion diffraction into two jets is also critically examined and significant corrections are identified.We show also that for values of Îșt\kappa_t achieved at fixed target energies, di-jet production by the e.m. field of the nucleus leads to an insignificant correction which gets more important as Îșt\kappa_t increases.Comment: 23 pages, 9 figure

    New Effective Feynman-like Rules for the Multi-Regge QCD Asymptotics of Inclusive Multijet Production

    Full text link
    New effective Feynman-like rules are defined for inclusive multijet cross sections in the multi-Regge regime. The solution of the BFKL equation is used as a starting point. The resulting rules involve conformal weight and rapidity as a momentum and a coordinate respectively and are translation invariant in the coordinates. We use the effective rules to calculate ultra high energy asymptotics of inclusive multijet production. The dependence on the parton densities occurs only in the overall normalization of the asymptotic cross sections.Comment: 12 pages in Latex, 3 figs by epsfig, refs update
    • 

    corecore