1,975 research outputs found

    Bulk experimental evidence of half-metallic ferromagnetism in doped manganites

    Full text link
    We report precise measurements and quantitative data analysis on the low-temperature resistivity of several ferromagnetic manganite films. We clearly show that there exists a T^{4.5} term in low-temperature resistivity, and that this term is in quantitative agreement with the quantum theory of two-magnon scattering for half metallic ferromagnets. Our present results provide the first bulk experimental evidence of half-metallic ferromagnetism in doped manganites.Comment: 4 pages, 4 figure

    CFD Simulation of Liquid-solid Multiphase Flow in Mud Mixer

    Get PDF
    In the present study, a computational fluid dynamics (CFD) simulation was performed to analyze the mixing phenomena associated with multi-phase flow in a mud mixing system. For the validation of CFD simulation, firstly a liquid-solid multiphase flow inside horizontal pipe was simulated and compared with the experiments and other numerical simulations. And then, the multiphase flow simulation was carried out for the mud mixer in the drilling handling system in order to understand mixing phenomena and predict the mixing efficiency. For the modeling and simulation, a commercial software, STAR-CCM+, based on a finite-volume method (FVM) was adopted. The simulation results for liquid-solid flow inside the pipe shows a good agreement with the experimental data. With the same multiphase model, the simulation for mud mixer is performed under the generalized boundary condition and then pressure drop through the mud mixer will be discussed

    Fluctuations in viscous fingering

    Full text link
    Our experiments on viscous (Saffman-Taylor) fingering in Hele-Shaw channels reveal finger width fluctuations that were not observed in previous experiments, which had lower aspect ratios and higher capillary numbers Ca. These fluctuations intermittently narrow the finger from its expected width. The magnitude of these fluctuations is described by a power law, Ca^{-0.64}, which holds for all aspect ratios studied up to the onset of tip instabilities. Further, for large aspect ratios, the mean finger width exhibits a maximum as Ca is decreased instead of the predicted monotonic increase.Comment: Revised introduction, smoothed transitions in paper body, and added a few additional minor results. (Figures unchanged.) 4 pages, 3 figures. Submitted to PRE Rapi

    Design and Realization of Multiplexing System for Fixed/Mobile Next-Generation Broadcasting Service in Network Free Environment

    Get PDF
    The Current broadcasting enviroment is constally evolving in order to meet the various needs of the viewer such as ColorTV, 3D, HD, UHD TV serivce.  And they want to broadcasting the same quality in the fixed and mobile enviroment for high definition braodcasting serive. In this paper, we presnet a design and implementation  of muilplexing  system for fixed/mobile next generation broadcasting service in network free enivorment. Network free means receive both the broadcasting channel and communication chennel for various TV service. We introduce method to provide next generation convergence broadcating servies based on european standard which can transmit UHD content in network free envieroment.  As a result to this paper, we analyze the characteristics of the recieved signal from the commerical receiver device

    Field-driven solid-on-solid interfaces moving under a stochastic Arrhenius dynamic: effects of the barrier height

    Full text link
    We present analytical results and kinetic Monte Carlo simulations for the mobility and microscopic structure of solid-on-solid (SOS) interfaces driven far from equilibrium by an external force, such as an applied field or (electro)chemical potential difference. The interfaces evolve under a specific stochastic dynamic with a local energy barrier (an Arrhenius dynamic), known as the transition dynamics approximation (TDA). We calculate the average height of steps on the interface, the average interface velocity, and the skewness of the interface as functions of the driving force and the height of the energy barrier. We find that the microscopic interface structure depends quite strongly on the barrier height. As the barrier becomes higher, the local interface width decreases and the skewness increases, suggesting increasing short-range correlations between the step heights.Comment: 6 pages, 5 figs. RevTe

    Incoherent dynamics of vibrating single-molecule transistors

    Get PDF
    We study the tunneling conductance of nano-scale quantum ``shuttles'' in connection with a recent experiment (H. Park et al., Nature, 407, 57 (2000)) in which a vibrating C^60 molecule was apparently functioning as the island of a single electron transistor (SET). While our calculation starts from the same model of previous work (D. Boese and H. Schoeller, Europhys. Lett. 54, 66(2001)) we obtain quantitatively different dynamics. Calculated I-V curves exhibit most features present in experimental data with a physically reasonable parameter set, and point to a strong dependence of the oscillator's potential on the electrostatics of the island region. We propose that in a regime where the electric field due to the bias voltage itself affects island position, a "catastrophic" negative differential conductance (NDC) may be realized. This effect is directly attributable to the magnitude of overlap of final and initial quantum oscillator states, and as such represents experimental control over quantum transitions of the oscillator via the macroscopically controllable bias voltage.Comment: 6 pages, LaTex, 6 figure

    Generalized empty-interval method applied to a class of one-dimensional stochastic models

    Full text link
    In this work we study, on a finite and periodic lattice, a class of one-dimensional (bimolecular and single-species) reaction-diffusion models which cannot be mapped onto free-fermion models. We extend the conventional empty-interval method, also called {\it interparticle distribution function} (IPDF) method, by introducing a string function, which is simply related to relevant physical quantities. As an illustration, we specifically consider a model which cannot be solved directly by the conventional IPDF method and which can be viewed as a generalization of the {\it voter} model and/or as an {\it epidemic} model. We also consider the {\it reversible} diffusion-coagulation model with input of particles and determine other reaction-diffusion models which can be mapped onto the latter via suitable {\it similarity transformations}. Finally we study the problem of the propagation of a wave-front from an inhomogeneous initial configuration and note that the mean-field scenario predicted by Fisher's equation is not valid for the one-dimensional (microscopic) models under consideration.Comment: 19 pages, no figure. To appear in Physical Review E (November 2001

    Constructing 3D crystal templates for photonic band gap materials using holographic optical tweezers

    Get PDF
    A simple and robust method is presented for the construction of 3-dimensional crystals from silica and polystyrene microspheres. The crystals are suitable for use as templates in the production of three-dimensional photonic band gap (PBG) materials. Manipulation of the microspheres was achieved using a dynamic holographic assembler (DHA) consisting of computer controlled holographic optical tweezers. Attachment of the microspheres was achieved by adjusting their colloidal interactions during assembly. The method is demonstrated by constructing a variety of 3-dimensional crystals using spheres ranging in size from 3 µm down to 800 nm. A major advantage of the technique is that it may be used to build structures that cannot be made using self-assembly. This is illustrated through the construction of crystals in which line defects have been deliberately included, and by building simple cubic structures

    Dynamical surface structures in multi-particle-correlated surface growths

    Full text link
    We investigate the scaling properties of the interface fluctuation width for the QQ-mer and QQ-particle-correlated deposition-evaporation models. These models are constrained with a global conservation law that the particle number at each height is conserved modulo QQ. In equilibrium, the stationary roughness is anomalous but universal with roughness exponent α=1/3\alpha=1/3, while the early time evolution shows nonuniversal behavior with growth exponent β\beta varying with models and QQ. Nonequilibrium surfaces display diverse growing/stationary behavior. The QQ-mer model shows a faceted structure, while the QQ-particle-correlated model a macroscopically grooved structure.Comment: 16 pages, 10 figures, revte
    corecore