180 research outputs found

    Initial investigations into using an ensemble of deep neural networks for building façade image semantic segmentation

    Get PDF
    Due to now outdated construction technology, houses which have not been retrofitted since construction typically fail to meet modern energy performance levels. However, identifying at a city scale which houses could benefit the most from retrofit solutions is currently a labour intensive process. In this paper, a system that uses a vehicle mounted camera to capture pictures of residential buildings and then performs semantic segmentation to differentiate components of captured buildings is presented. An ensemble of U-Net semantic segmentation models are trained to identify walls, roofs, chimneys, windows and doors from building façade images and differentiate between window and door instances which are partially visible or obscured. Results show that the ensemble of U-Net models achieved high accuracy in identifying walls, roofs and chimneys, moderate accuracy in identifying windows and low accuracy in identifying doors and instances of windows and doors which were partially visible or obscured. When U-Net models were retrained to identify doors or windows, irrespective of partially visible and obscured instances, a significant rise in door and window identification accuracy was observed. It is believed that a larger training dataset would produce significantly improved results across all classes. The results presented here prove the operational feasibility in the first part of a process to combine this model with high-resolution thermography and GPS for automating building retrofitting evaluations

    Stability estimates for resolvents, eigenvalues and eigenfunctions of elliptic operators on variable domains

    Full text link
    We consider general second order uniformly elliptic operators subject to homogeneous boundary conditions on open sets ϕ(Ω)\phi (\Omega) parametrized by Lipschitz homeomorphisms ϕ\phi defined on a fixed reference domain Ω\Omega. Given two open sets ϕ(Ω)\phi (\Omega), ϕ~(Ω)\tilde \phi (\Omega) we estimate the variation of resolvents, eigenvalues and eigenfunctions via the Sobolev norm ϕ~ϕW1,p(Ω)\|\tilde \phi -\phi \|_{W^{1,p}(\Omega)} for finite values of pp, under natural summability conditions on eigenfunctions and their gradients. We prove that such conditions are satisfied for a wide class of operators and open sets, including open sets with Lipschitz continuous boundaries. We apply these estimates to control the variation of the eigenvalues and eigenfunctions via the measure of the symmetric difference of the open sets. We also discuss an application to the stability of solutions to the Poisson problem.Comment: 34 pages. Minor changes in the introduction and the refercenes. Published in: Around the research of Vladimir Maz'ya II, pp23--60, Int. Math. Ser. (N.Y.), vol. 12, Springer, New York 201

    Vortex Rings in Fast Rotating Bose-Einstein Condensates

    Full text link
    When Bose-Eintein condensates are rotated sufficiently fast, a giant vortex phase appears, that is the condensate becomes annular with no vortices in the bulk but a macroscopic phase circulation around the central hole. In a former paper [M. Correggi, N. Rougerie, J. Yngvason, {\it arXiv:1005.0686}] we have studied this phenomenon by minimizing the two dimensional Gross-Pitaevskii energy on the unit disc. In particular we computed an upper bound to the critical speed for the transition to the giant vortex phase. In this paper we confirm that this upper bound is optimal by proving that if the rotation speed is taken slightly below the threshold there are vortices in the condensate. We prove that they gather along a particular circle on which they are evenly distributed. This is done by providing new upper and lower bounds to the GP energy.Comment: to appear in Archive of Rational Mechanics and Analysi

    Performance and Simulation of the RICE detector

    Get PDF
    The RICE experiment (Radio Ice Cherenkov Experiment) at the South Pole, co-deployed with the AMANDA experiment, seeks to detect ultra-high energy (UHE) electron neutrinos interacting in cold polar ice. Such interactions produce electromagnetic showers, which emit radio-frequency Cherenkov radiation. We describe the experimental apparatus and the procedures used to measure the neutrino flux.Comment: preprint, to be submitted to Astropart. Phy

    Leray and LANS-α\alpha modeling of turbulent mixing

    Get PDF
    Mathematical regularisation of the nonlinear terms in the Navier-Stokes equations provides a systematic approach to deriving subgrid closures for numerical simulations of turbulent flow. By construction, these subgrid closures imply existence and uniqueness of strong solutions to the corresponding modelled system of equations. We will consider the large eddy interpretation of two such mathematical regularisation principles, i.e., Leray and LANSα-\alpha regularisation. The Leray principle introduces a {\bfi smoothed transport velocity} as part of the regularised convective nonlinearity. The LANSα-\alpha principle extends the Leray formulation in a natural way in which a {\bfi filtered Kelvin circulation theorem}, incorporating the smoothed transport velocity, is explicitly satisfied. These regularisation principles give rise to implied subgrid closures which will be applied in large eddy simulation of turbulent mixing. Comparison with filtered direct numerical simulation data, and with predictions obtained from popular dynamic eddy-viscosity modelling, shows that these mathematical regularisation models are considerably more accurate, at a lower computational cost.Comment: 42 pages, 12 figure

    Overlap of Genetic Risk between Interstitial Lung Abnormalities and Idiopathic Pulmonary Fibrosis

    Get PDF
    Rationale: Interstitial lung abnormalities (ILAs) are associated with the highest genetic risk locus for idiopathic pulmonary fibrosis (IPF); however, the extent to which there are unique associations among individuals with ILAs or additional overlap with IPF is not known.Objectives: To perform a genome-wide association study (GWAS) of ILAs.Methods: ILAs and a subpleural-predominant subtype were assessed on chest computed tomography (CT) scans in the AGES (Age Gene/Environment Susceptibility), COPDGene (Genetic Epidemiology of Chronic Obstructive Pulmonary Disease [COPD]), Framingham Heart, ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points), MESA (Multi-Ethnic Study of Atherosclerosis), and SPIROMICS (Subpopulations and Intermediate Outcome Measures in COPD Study) studies. We performed a GWAS of ILAs in each cohort and combined the results using a meta-analysis. We assessed for overlapping associations in independent GWASs of IPF.Measurements and Main Results: Genome-wide genotyping data were available for 1,699 individuals with ILAs and 10,274 control subjects. The MUC5B (mucin 5B) promoter variant rs35705950 was significantly associated with both ILAs (P = 2.6 × 10-27) and subpleural ILAs (P = 1.6 × 10-29). We discovered novel genome-wide associations near IPO11 (rs6886640, P = 3.8 × 10-8) and FCF1P3 (rs73199442, P = 4.8 × 10-8) with ILAs, and near HTRE1 (rs7744971, P = 4.2 × 10-8) with subpleural-predominant ILAs. These novel associations were not associated with IPF. Among 12 previously reported IPF GWAS loci, five (DPP9, DSP, FAM13A, IVD, and MUC5B) were significantly associated (P < 0.05/12) with ILAs.Conclusions: In a GWAS of ILAs in six studies, we confirmed the association with a MUC5B promoter variant and found strong evidence for an effect of previously described IPF loci; however, novel ILA associations were not associated with IPF. These findings highlight common genetically driven biologic pathways between ILAs and IPF, and also suggest distinct ones

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society
    corecore