89 research outputs found

    Forages for Conservation and Improved Soil Quality

    Get PDF
    Forages provide several soil benefits, including reduced soil erosion, reduced water runoff, improved soil physical properties, increased soil carbon, increased soil biologic activity, reduced soil salinity, and improved land stabilization and restoration when grown continuously or as part of a crop rotation. Ongoing research and synthesis of knowledge have improved our understanding of how forages alter and protect soil resources, thus providing producers, policymakers, and the general public information regarding which forage crops are best suited for a specific area or use (e.g. hay, grazing or bioenergy feedstock). Forages can be produced in forestland, range, pasture, and cropland settings. These land use types comprise 86% of non-Federal United States rural lands (Table 12.1). In the United States, active forage production occurs on 22.6 million ha and is used for hay, haylage, grass silage, and greenchop (Table 12.2). Forages are used as cover crops in several production systems, and approximately 4.2 million ha were recently planted in cover crops (Table 12.3). Currently, the highest cover crop use rates, as a percentage of total cropland within a given state, occur in the northeastern United States. Globally, permanent meadows and pastures account for over 3.3 billion ha, greater than arable land and permanent crops combined (Table 12.4). Within all regions of the world, except Europe, permanent meadows and pastures are a greater proportion of land cover than permanent crops. Pasture management information and resources are available for countries around the world (FAO 2017a,b). As seen in Tables 12.1–12.4, forages are used globally and can provide soil benefits across varied soil and climate types

    Historical roots of Agile methods: where did “Agile thinking” come from?

    No full text
    The appearance of Agile methods has been the most noticeable change to software process thinking in the last fifteen years [16], but in fact many of the “Agile ideas” have been around since 70’s or even before. Many studies and reviews have been conducted about Agile methods which ascribe their emergence as a reaction against traditional methods. In this paper, we argue that although Agile methods are new as a whole, they have strong roots in the history of software engineering. In addition to the iterative and incremental approaches that have been in use since 1957 [21], people who criticised the traditional methods suggested alternative approaches which were actually Agile ideas such as the response to change, customer involvement, and working software over documentation. The authors of this paper believe that education about the history of Agile thinking will help to develop better understanding as well as promoting the use of Agile methods. We therefore present and discuss the reasons behind the development and introduction of Agile methods, as a reaction to traditional methods, as a result of people's experience, and in particular focusing on reusing ideas from histor

    Designing a survey to monitor multi-scale impacts of agri-environment schemes on mobile taxa

    Get PDF
    Agri-environment schemes (AES) are key mechanisms to deliver conservation policy, and include management to provide resources for target taxa. Mobile species may move to areas where resources are increased, without this necessarily having an effect across the wider countryside or on populations over time. Most assessments of AES efficacy have been at small spatial scales, over short timescales, and shown varying results. We developed a survey design based on orthogonal gradients of AES management at local and landscape scales, which will enable the response of several taxa to be monitored. An evidence review of management effects on butterflies, birds and pollinating insects provided data to score AES options. Predicted gradients were calculated using AES uptake, weighted by the evidence scores. Predicted AES gradients for each taxon correlated strongly, and with the average gradient across taxa, supporting the co-location of surveys across different taxa. Nine 1 × 1 km survey squares were selected in each of four regional blocks with broadly homogenous background habitat characteristics. Squares in each block covered orthogonal contrasts across the range of AES gradients at local and landscape scales. This allows the effects of AES on species at each scale, and the interaction between scales, to be tested. AES options and broad habitats were mapped in field surveys, to verify predicted gradients which were based on AES option uptake data. The verified AES gradient had a strong positive relationship with the predicted gradient. AES gradients were broadly independent of background habitat within each block, likely allowing AES effects to be distinguished from potential effects of other habitat variables. Surveys of several mobile taxa are ongoing. This design will allow mobile taxa responses to AES to be tested in the surrounding countryside, as well as on land under AES management, and potentially in terms of population change over time. The design developed here provides a novel, pseudo-experimental approach for assessing the response of mobile species to gradients of management at two spatial scales. A similar design process could be applied in other regions that require a standardized approach to monitoring the impacts of management interventions on target taxa at landscape scales, if equivalent spatial data are available

    Landscape-scale species monitoring of agri-environment schemes (LandSpAES project). Final project report, 2022

    Get PDF
    In this project, we applied a novel, pseudo-experimental design in order to collect a baseline survey dataset of the responses of mobile taxa to local and landscape AES gradients over four years, from 54 survey squares across six regions (NCAs) in England. This is the first project to monitor the responses of multiple mobile taxa to generalised AES gradients across large spatial extents, which were applied to arable, grassland and upland agricultural systems, in order specifically to address impacts beyond AES option or agreement boundaries. This baseline dataset supported a spatial assessment of relationships between the AES gradients and taxon abundance (or activity), species richness and diversity. Strong evidence for relationships with local and / or landscape AES gradients were found for one or more response variable for butterflies, moths and bats. Little or no evidence of AES gradient relationships were found for either bees or hoverflies and weak evidence for associations with bird metrics. A future resurvey would allow analyses of the longer-term changes in target taxa in response to AES management, against this baseline. The identification of various spatial relationships is encouraging in terms of the likely power to detect AES effects on biodiversity change in the future

    Acceleration of Relativistic Protons during the 20 January 2005 Flare and CME

    Get PDF
    The origin of relativistic solar protons during large flare/CME events has not been uniquely identified so far.We perform a detailed comparative analysis of the time profiles of relativistic protons detected by the worldwide network of neutron monitors at Earth with electromagnetic signatures of particle acceleration in the solar corona during the large particle event of 20 January 2005. The intensity-time profile of the relativistic protons derived from the neutron monitor data indicates two successive peaks. We show that microwave, hard X-ray and gamma-ray emissions display several episodes of particle acceleration within the impulsive flare phase. The first relativistic protons detected at Earth are accelerated together with relativistic electrons and with protons that produce pion decay gamma-rays during the second episode. The second peak in the relativistic proton profile at Earth is accompanied by new signatures of particle acceleration in the corona within approximatively 1 solar radius above the photosphere, revealed by hard X-ray and microwave emissions of low intensity, and by the renewed radio emission of electron beams and of a coronal shock wave. We discuss the observations in terms of different scenarios of particle acceleration in the corona.Comment: 22 pages, 5 figure

    Track D Social Science, Human Rights and Political Science

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138414/1/jia218442.pd

    Model for hydrogen isotope backscattering, trapping and depth profiles in C and a-Si

    No full text
    A model of low energy hydrogen trapping and backscattering in carbon and a-silicon is described. Depth profiles are calculated and numerical results presented for various incident angular and energy distributions. The calculations yield a relation between depth profiles and the incident ion energy distribution. The use of this model for tokamak plasma diagnosis is discussed
    • …
    corecore