15 research outputs found

    Precise Therapy for Thoracic Aortic Aneurysm in Marfan Syndrome: A Puzzle Nearing Its Solution.

    Get PDF
    Abstract Marfan Syndrome (MFS) is a rare connective tissue disorder, resulting from mutations in the fibrillin-1 gene, characterized by pathologic phenotypes in multiple organs, the most detrimental of which affects the thoracic aorta. Indeed, thoracic aortic aneurysms (TAA), leading to acute dissection and rupture, are today the major cause of morbidity and mortality in adult MFS patients. Therefore, there is a compelling need for novel therapeutic strategies to delay TAA progression and counteract aortic dissection occurrence. Unfortunately, the wide phenotypic variability of MFS patients, together with the lack of a complete genotype-phenotype correlation, have represented until now a barrier hampering the conduction of translational studies aimed to predict disease prognosis and drug discovery. In this review, we will illustrate available therapeutic strategies to improve the health of MFS patients. Starting from gold standard surgical overtures and the description of the main pharmacological approaches, we will comprehensively review the state-of-the-art of in vivo MFS models and discuss recent clinical pharmacogenetic results. Finally, we will focus on induced pluripotent stem cells (iPSC) as a technology that, if integrated with preclinical research and pharmacogenetics, could contribute in determining the best therapeutic approach for each MFS patient on the base of individual differences. Finally, we will suggest the integration of preclinical studies, pharmacogenetics and iPSC technology as the most likely strategy to help solve the composite puzzle of precise medicine in this condition

    Cell models of arrhythmogenic cardiomyopathy: advances and opportunities

    Get PDF
    Arrhythmogenic cardiomyopathy is a rare genetic disease that is mostly inherited as an autosomal dominant trait. It is associated predominantly with mutations in desmosomal genes and is characterized by the replacement of the ventricular myocardium with fibrous fatty deposits, arrhythmias and a high risk of sudden death. In vitro studies have contributed to our understanding of the pathogenic mechanisms underlying this disease, including its genetic determinants, as well as its cellular, signaling and molecular defects. Here, we review what is currently known about the pathogenesis of arrhythmogenic cardiomyopathy and focus on the in vitro models that have advanced our understanding of the disease. Finally, we assess the potential of established and innovative cell platforms for elucidating unknown aspects of this disease, and for screening new potential therapeutic agents. This appraisal of in vitro models of arrhythmogenic cardiomyopathy highlights the discoveries made about this disease and the uses of these models for future basic and therapeutic research

    Peptidyl-prolyl isomerases : A full cast of critical actors in cardiovascular diseases

    Get PDF
    Peptidyl-prolyl cis-trans-isomerases are a highly conserved family of immunophilins. The three peptidyl-prolyl cis-trans-isomerase subfamilies are cyclophilins, FK-506-binding proteins, and parvulins. Peptidyl-prolyl cis-trans-isomerases are expressed in multiple human tissues and regulate different cellular functions, e.g. calcium handling, protein folding, and gene expression. Moreover, these subfamilies have been shown to be consistently involved in several cardiac and vascular diseases including heart failure, arrhythmias, vascular stenosis, endothelial dysfunction, atherosclerosis, and hypertension. This review provides a concise description of the peptidyl-prolyl cis-trans-isomerases and presents an incisive selection of studies focused on their relationship with cardiovascular diseases

    Integrin ανβ5 in vitro inhibition limits pro-fibrotic response in cardiac fibroblasts of spontaneously hypertensive rats

    Get PDF
    BackgroundTo date the TGF-1 activation mediated by integrin 5 during fibrosis is well-known. This process has been shown also in the heart, where cardiac fibroblasts (CF) differentiate into -smooth muscle actin (-SMA)-positive myofibroblasts (MyoFB). Here, we studied the effects on CF, isolated by spontaneously hypertensive rats (SHR), of integrin 5 inhibition in MyoFB differentiation.MethodsStaining and immunohistochemistry were performed on rat cardiac tissue. CF were isolated by enzymatic digestion from SHR (SHR-CF) and normotensive WKY (WKY-CF) rat hearts and then treated for in vitro evaluation.ResultsSHR heart tissues revealed a higher TGF-1 expression vs. WKY samples. SHR-CF showed an enhanced SMAD2/3 activation and an up-regulated expression of -SMA, a typical MyoFB marker, especially after TGF-1 treatment. Immunostaining on cardiac tissues revealed a higher expression of integrin 5 in SHR vs. WKY rat hearts. In vitro results confirmed the up-regulation of integrin 5 expression in SHR-CF at basal condition and after TGF-1 treatment, in comparison with WKY-CF. Inhibition of integrin 5 by cilengitide treatment led a decreased expression of 5, collagen I, and -SMA in SHR-CF vs. WKY-CF, resulting in a diminished differentiation of CF into MyoFB. Taking together, results suggested that SHR-CF are more susceptible to TGF-1, showing an up-regulated activation of SMAD2/3 signaling, and an increased 5, -SMA, and collagen I expression. Hypertension stimulus promoted an up-regulation of integrin 5 on SHR cardiac tissue and its in vitro inhibition reverted pro-fibrotic events of SHR-CF.ConclusionInhibition of integrin 5 exerted by cilengitide strongly diminished SHR-CF differentiation into detrimental MyoFB. So, integrin 5 might be considered a novel therapeutic target and cilengitide an effective pharmacological tool to limit the progression of hypertension-induced cardiac fibrosis

    Cyclophilin A/EMMPRIN Axis Is Involved in Pro-Fibrotic Processes Associated with Thoracic Aortic Aneurysm of Marfan Syndrome Patients

    Get PDF
    Background: Marfan syndrome (MFS) is a genetic disease, characterized by thoracic aortic aneurysm (TAA), which treatment is to date purely surgical. Understanding of novel molecular targets is mandatory to unveil effective pharmacological approaches. Cyclophilin A (CyPA) and its receptor EMMPRIN are associated with several cardiovascular diseases, including abdominal aortic aneurysm. Here, we envisioned the contribution of CyPA/EMMPRIN axis in MFS-related TAA. METHODS: We obtained thoracic aortic samples from healthy controls (HC) and MFS patients' aortas and then isolated vascular smooth muscle cells (VSMC) from the aortic wall. RESULTS: our findings revealed that MFS aortic tissue samples isolated from the dilated zone of aorta showed higher expression levels of EMMPRIN vs. MFS non-dilated aorta and HC. Interestingly, angiotensin II significantly stimulated CyPA secretion in MFS-derived VSMC (MFS-VSMC). CyPA treatment on MFS-VSMC led to increased levels of EMMPRIN and other MFS-associated pro-fibrotic mediators, such as TGF-\u3b21 and collagen I. These molecules were downregulated by in vitro treatment with CyPA inhibitor MM284. Our results suggest that CyPA/EMMPRIN axis is involved in MFS-related TAA development, since EMMPRIN is upregulated in the dilated zone of MFS patients' TAA and the inhibition of its ligand, CyPA, downregulated EMMPRIN and MFS-related markers in MFS-VSMC. CONCLUSIONS: these insights suggest both a novel detrimental role for CyPA/EMMPRIN axis and its inhibition as a potential therapeutic strategy for MFS-related TAA treatment

    Cardiac fibrosis in regenerative medicine : destroy to rebuild

    No full text
    The major limitations for cardiac regeneration in patients after myocardial infarction (MI) are the wide loss of cardiomyocytes and the adverse structural alterations of extracellular matrix (ECM). Cardiac fibroblast differentiation into myofibroblasts (MFB) leads to a huge deposition of ECM and to the subsequent loss of ventricular structural integrity. All these molecular events depict the fundamental features at the basis of the post-MI fibrosis and deserve in depth cellular and molecular studies to fill the gap in the clinical practice. Indeed, to date, there are no effective therapeutic approaches to limit the post-MI massive fibrosis development. In this review we describe the involvement of integrins and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)/ADAMTS-like (ADAMTSL) proteins in cardiac reparative pro-fibrotic response after MI, proposing some of them as novel potential pharmacological tools

    Assessing cytokines' talking patterns following experimental myocardial damage by applying Shannon's information theory

    No full text
    BACKGROUND: The simultaneous measurement of multiple cytokines in parallel by using multiplex proteome arrays (MPA) is of great interest to understanding the inflammatory response following myocardial infarction; however, since cytokines are pleiotropic and redundant, increase of information throughput (IT) attained by measuring multiple cytokines remain to be determined. We aimed this study to assess the IT of an MPA system designed to assess 8 cytokines - commercially available at the time of the study - serum levels, before (control state) and after experimental myocardial cryoinjury (activated state) in rats. METHODS: By assuming that redundant information do not generally increase the IT, we derived Entropy (H) and Redundancy (R) of information by using formulas of Shannon modified accordingly, where a high IT (high H and low R) corresponds to a low level of correlation between cytokines and vice versa for a low IT. The maximum theoretical level of IT and the contribution of each cytokine were also estimated. RESULTS: In control state, no significant correlations were found between cytokines showing high IT; on the contrary, in activated state, several significant correlations were found supporting a complex cross-talk pattern between cytokines with low IT. Using as reference the maximum theoretical level of IT, in activated state, H was reduced of 67.0% and R was increased of 77.4% supporting a reduction of IT. Furthermore, the contribution of individual cytokines to H value of MPA was variable: in control state, IL-2 gave the most contribution to H value, conversely during activated state IL-10 gave most contribution. Finally during activated state, IL-1\u3b2 was the only cytokine strongly correlated with values of all other cytokines, suggesting a crucial role in the inflammatory cascade. CONCLUSIONS: Paradoxically, by analyzing an MPA system designed for redundant analytes such as cytokines, translating the Shannon's information theory from the field of communication to biology, the IT system in our model deteriorates during the activation state by increasing its redundancy, showing maximum value of entropy in the control conditions. Finally, the study of the mutual interdependence between cytokines by the contribution to the IT may allow formulating alternative models to describe the inflammatory cascade after myocardial infarction

    Vascular smooth muscle cells in Marfan syndrome aneurysm : the broken bricks in the aortic wall

    No full text
    Marfan syndrome (MFS) is a connective tissue disorder with multiple organ manifestations. The genetic cause of this syndrome is the mutation of the FBN1 gene, encoding the extracellular matrix (ECM) protein fibrillin-1. This genetic alteration leads to the degeneration of microfibril structures and ECM integrity in the tunica media of the aorta. Indeed, thoracic aortic aneurysm and dissection represent the leading cause of death in MFS patients. To date, the most effective treatment option for this pathology is the surgical substitution of the damaged aorta. To highlight novel therapeutic targets, we review the molecular mechanisms related to MFS etiology in vascular smooth muscle cells, the foremost cellular type involved in MFS pathogenesis

    Immunohistochemical expression of oncological proliferation markers in the hearts of rats during normal pregnancy

    No full text
    Aim: Pregnancy is characterized by left ventricular hypertrophy that is potentially accounted for by cardiomyocyte proliferation, although no such evidence is currently available. This study investigates if the left ventricular mass (LVM) increase during pregnancy implies cell hyperplasia. Materials & methods: In nonpregnant and late-pregnant rats, cardiac function and LVM were evaluated by MRI, and cardiomyocyte dimensions and proliferations were assessed quantitatively by morphometric analysis and immunohistochemistry using oncological markers (Ki67 and MCM2). Results: In late-pregnant rats, LVM and cardiomyocyte area were greater. No mitotic figures were found nor was there any significant difference between groups in Ki67 expression. MCM2 expression was related to LVM. Conclusion: During pregnancy, rat cardiomyocytes undergo hypertrophy but not hyperplasia; the expression of MCM2, related to LVM, suggests it could be a marker of protein synthesis. The application of oncological markers to physiological contexts may provide insight into their role within the cell cycl
    corecore