485 research outputs found

    Scaling algebras and pointlike fields: A nonperturbative approach to renormalization

    Full text link
    We present a method of short-distance analysis in quantum field theory that does not require choosing a renormalization prescription a priori. We set out from a local net of algebras with associated pointlike quantum fields. The net has a naturally defined scaling limit in the sense of Buchholz and Verch; we investigate the effect of this limit on the pointlike fields. Both for the fields and their operator product expansions, a well-defined limit procedure can be established. This can always be interpreted in the usual sense of multiplicative renormalization, where the renormalization factors are determined by our analysis. We also consider the limits of symmetry actions. In particular, for suitable limit states, the group of scaling transformations induces a dilation symmetry in the limit theory.Comment: minor changes and clarifications; as to appear in Commun. Math. Phys.; 37 page

    Wave reflection at the origin of a first-generation branch artery and target organ protection: the AGES-Reykjavik study

    Get PDF
    Excessive pressure and flow pulsatility in first-generation branch arteries are associated with microvascular damage in high-flow organs like brain and kidneys. However, the contribution of local wave reflection and rereflection to microvascular damage remains controversial. Aortic flow, carotid pressure, flow and hydraulic power, brain magnetic resonance images, and cognitive scores were assessed in AGES-Reykjavik study participants without history of stroke, transient ischemic attack, or dementia (N=668, 378 women, 69-93 years of age). The aorta-carotid interface was generalized as a markedly asymmetrical bifurcation, with a large parent vessel (proximal aorta) branching into small (carotid) and large (distal aorta) daughter vessels. Local reflection coefficients were computed from aortic and carotid characteristic impedances. The bifurcation reflection coefficient, which determines pressure amplification in both daughter vessels, was low (0.06 +/- 0.03). The carotid flow transmission coefficient was low (0.11 +/- 0.04) and associated with markedly lower carotid versus aortic flow pulsatility (waveform SD, 7.2 +/- 2.0 versus 98.7 +/- 21.8 mL/s, P<0.001), pulsatility index (1.8 +/- 0.5 versus 4.5 +/- 0.6, P<0.001), and pulsatile power percentage (10 +/- 4% versus 25 +/- 5%, P<0.001). Transmitted as compared to incident pulsatile power (19.0 +/- 9.8 versus 35.9 +/- 17.8 mW, P<0.001) was further reduced by reflection (-4.3 +/- 2.7 mW) and rereflection (-12.5 +/- 8.1 mW) within the carotid. Higher carotid flow pulsatility correlated with lower white matter volume (R=-0.130, P<0.001) and lower memory scores (R=-0.161, P<0.001). Marked asymmetry of characteristic impedances at aorta-branch artery bifurcations limits amplification of pressure, markedly reduces absolute and relative pulsatility of transmitted flow and hydraulic power into first-generation branch arteries, and thereby protects the downstream local microcirculation from pulsatile damage.Neuro Imaging Researc

    High Pressure Thermoelasticity of Body-centered Cubic Tantalum

    Full text link
    We have investigated the thermoelasticity of body-centered cubic (bcc) tantalum from first principles by using the linearized augmented plane wave (LAPW) and mixed--basis pseudopotential methods for pressures up to 400 GPa and temperatures up to 10000 K. Electronic excitation contributions to the free energy were included from the band structures, and phonon contributions were included using the particle-in-a-cell (PIC) model. The computed elastic constants agree well with available ultrasonic and diamond anvil cell data at low pressures, and shock data at high pressures. The shear modulus c44c_{44} and the anisotropy change behavior with increasing pressure around 150 GPa because of an electronic topological transition. We find that the main contribution of temperature to the elastic constants is from the thermal expansivity. The PIC model in conjunction with fast self-consistent techniques is shown to be a tractable approach to studying thermoelasticity.Comment: To be appear in Physical Review

    Modeling Complex Nuclear Spectra - Regularity versus Chaos

    Get PDF
    A statistical analysis of the spectrum of two particle - two hole doorway states in a finite nucleus is performed. On the unperturbed mean-field level sizable attractive correlations are present in such a spectrum. Including particle-hole rescattering effects via the residual interaction introduces repulsive dynamical correlations which generate the fluctuation properties characteristic of the Gaussian Orthogonal Ensemble. This signals that the underlying dynamics becomes chaotic. This feature turns out to be independent of the detailed form of the residual interaction and hence reflects the generic nature of the fluctuations studied.Comment: 8 pages of text (LATEX), figures (not included, available from the authors), Feb 9

    Small-polaron hopping conductivity in bilayer manganite La1.2_{1.2}Sr1.8_{1.8}Mn2_{2}O7_{7}

    Full text link
    We report anisotropic resistivity measurements on a La1.2_{1.2}Sr1.8_{1.8}Mn2_{2}O7_{7} single crystal over a temperature TT range from 2 to 400 K and in magnetic fields HH up to 14 T. For Tā‰„218T\geq 218 K, the temperature dependence of the zero-field in-plane Ļab(T)\rho_{ab}(T) resistivity obeys the adiabatic small polaron hopping mechanism, while the out-of-plane Ļc(T)\rho_{c}(T) resistivity can be ascribed by an Arrhenius law with the same activation energy. Considering the magnetic character of the polarons and the close correlation between the resistivity and magnetization, we developed a model which allows the determination of Ļab,c(H,T)\rho_{ab,c}(H,T). The excellent agreement of the calculations with the measurements indicates that small polarons play an essential role in the electrical transport properties in the paramagnetic phase of bilayer manganites.Comment: 4 pages, 3 figures, to appear in Physical Review

    Affective Man-Machine Interface: Unveiling human emotions through biosignals

    Get PDF
    As is known for centuries, humans exhibit an electrical profile. This profile is altered through various psychological and physiological processes, which can be measured through biosignals; e.g., electromyography (EMG) and electrodermal activity (EDA). These biosignals can reveal our emotions and, as such, can serve as an advanced man-machine interface (MMI) for empathic consumer products. However, such a MMI requires the correct classification of biosignals to emotion classes. This chapter starts with an introduction on biosignals for emotion detection. Next, a state-of-the-art review is presented on automatic emotion classification. Moreover, guidelines are presented for affective MMI. Subsequently, a research is presented that explores the use of EDA and three facial EMG signals to determine neutral, positive, negative, and mixed emotions, using recordings of 21 people. A range of techniques is tested, which resulted in a generic framework for automated emotion classification with up to 61.31% correct classification of the four emotion classes, without the need of personal profiles. Among various other directives for future research, the results emphasize the need for parallel processing of multiple biosignals
    • ā€¦
    corecore