794 research outputs found

    Hecke algebras of finite type are cellular

    Full text link
    Let \cH be the one-parameter Hecke algebra associated to a finite Weyl group WW, defined over a ground ring in which ``bad'' primes for WW are invertible. Using deep properties of the Kazhdan--Lusztig basis of \cH and Lusztig's \ba-function, we show that \cH has a natural cellular structure in the sense of Graham and Lehrer. Thus, we obtain a general theory of ``Specht modules'' for Hecke algebras of finite type. Previously, a general cellular structure was only known to exist in types AnA_n and BnB_n.Comment: 14 pages; added reference

    Generalized Farey trees, transfer Operators and phase transitions

    Full text link
    We consider a family of Markov maps on the unit interval, interpolating between the tent map and the Farey map. The latter map is not uniformly expanding. Each map being composed of two fractional linear transformations, the family generalizes many particular properties which for the case of the Farey map have been successfully exploited in number theory. We analyze the dynamics through the spectral analysis of generalized transfer operators. Application of the thermodynamic formalism to the family reveals first and second order phase transitions and unusual properties like positivity of the interaction function.Comment: 39 pages, 10 figure

    On the Representation Theory of an Algebra of Braids and Ties

    Full text link
    We consider the algebra En(u){\cal E}_n(u) introduced by F. Aicardi and J. Juyumaya as an abstraction of the Yokonuma-Hecke algebra. We construct a tensor space representation for En(u){\cal E}_n(u) and show that this is faithful. We use it to give a basis for En(u){\cal E}_n(u) and to classify its irreducible representations.Comment: 24 pages. Final version. To appear in Journal of Algebraic Combinatorics

    Computer-Assisted Proofs of Some Identities for Bessel Functions of Fractional Order

    Full text link
    We employ computer algebra algorithms to prove a collection of identities involving Bessel functions with half-integer orders and other special functions. These identities appear in the famous Handbook of Mathematical Functions, as well as in its successor, the DLMF, but their proofs were lost. We use generating functions and symbolic summation techniques to produce new proofs for them.Comment: Final version, some typos were corrected. 21 pages, uses svmult.cl

    Draft genome sequence of isolate Staphylococcus aureus LHSKBClinical, isolated from an infected hip

    Get PDF
    We report here the genome sequence of a clinical isolate of <i>Staphylococcus aureus</i> from an orthopedic infection. Phenotypically diverse <i>Staphylococcus aureus</i> strains are associated with orthopedic infections and subsequent implant failure, and some are highly resistant to antibiotics. This genome sequence will support further analyses of strains causing orthopedic infections

    Partition functions and double-trace deformations in AdS/CFT

    Get PDF
    We study the effect of a relevant double-trace deformation on the partition function (and conformal anomaly) of a CFT at large N and its dual picture in AdS. Three complementary previous results are brought into full agreement with each other: bulk and boundary computations, as well as their formal identity. We show the exact equality between the dimensionally regularized partition functions or, equivalently, fluctuational determinants involved. A series of results then follows: (i) equality between the renormalized partition functions for all d; (ii) for all even d, correction to the conformal anomaly; (iii) for even d, the mapping entails a mixing of UV and IR effects on the same side (bulk) of the duality, with no precedent in the leading order computations; and finally, (iv) a subtle relation between overall coefficients, volume renormalization and IR-UV connection. All in all, we get a clean test of the AdS/CFT correspondence beyond the classical SUGRA approximation in the bulk and at subleading O(1) order in the large-N expansion on the boundary.Comment: 18 pages, uses JHEP3.cls. Published JHEP versio

    Azimuthal correlation in DIS

    Get PDF
    We introduce the azimuthal correlation for the deep inelastic scattering process. We present the QCD prediction to the level of next-to-leading log resummation, matching to the fixed order prediction. We also estimate the leading non-perturbative power correction. The observable is compared with the energy-energy correlation in e+e- annihilation, on which it is modelled. The effects of the resummation and of the leading power correction are both quite large. It would therefore be particularly instructive to study this observable experimentally.Comment: 33 pages, 4 figures, JHEP class included. One figure and some clarifications adde

    On the validity of entropy production principles for linear electrical circuits

    Full text link
    We discuss the validity of close-to-equilibrium entropy production principles in the context of linear electrical circuits. Both the minimum and the maximum entropy production principle are understood within dynamical fluctuation theory. The starting point are Langevin equations obtained by combining Kirchoff's laws with a Johnson-Nyquist noise at each dissipative element in the circuit. The main observation is that the fluctuation functional for time averages, that can be read off from the path-space action, is in first order around equilibrium given by an entropy production rate. That allows to understand beyond the schemes of irreversible thermodynamics (1) the validity of the least dissipation, the minimum entropy production, and the maximum entropy production principles close to equilibrium; (2) the role of the observables' parity under time-reversal and, in particular, the origin of Landauer's counterexample (1975) from the fact that the fluctuating observable there is odd under time-reversal; (3) the critical remark of Jaynes (1980) concerning the apparent inappropriateness of entropy production principles in temperature-inhomogeneous circuits.Comment: 19 pages, 1 fi

    Boundary Liouville theory at c=1

    Full text link
    The c=1 Liouville theory has received some attention recently as the Euclidean version of an exact rolling tachyon background. In an earlier paper it was shown that the bulk theory can be identified with the interacting c=1 limit of unitary minimal models. Here we extend the analysis of the c=1-limit to the boundary problem. Most importantly, we show that the FZZT branes of Liouville theory give rise to a new 1-parameter family of boundary theories at c=1. These models share many features with the boundary Sine-Gordon theory, in particular they possess an open string spectrum with band-gaps of finite width. We propose explicit formulas for the boundary 2-point function and for the bulk-boundary operator product expansion in the c=1 boundary Liouville model. As a by-product of our analysis we also provide a nice geometric interpretation for ZZ branes and their relation with FZZT branes in the c=1 theory.Comment: 37 pages, 1 figure. Minor error corrected, slight change in result (1.6
    corecore