223 research outputs found

    Crystal-fluid interactions in open-framework silicates

    Get PDF
    The structural evolution of microporous materials compressed hydrostatically in a fluid is drastically affected by the potential crystal-fluid interaction, with a penetration of new molecular species through the zeolitic voids in response to applied pressure. On the basis of recent experimental findings and computational modelling studies, it was observed that when no crystal-fluid interaction occurs, the effects of pressure are mainly accommodated by tilting of (quasi-rigid) tetrahedra around the bridging O atoms. Tilting of tetrahedra is the dominant mechanisms at low-mid P-regime, whereas distortion and compression of tetrahedra dominate the mid-high P regime. The deformation mechanisms are governed by the topological configuration of the tetrahedral framework, but the compressibility of the cavities is controlled by the ionic and molecular host content, resulting in different unit-cell volume compressibility in isotypic structures. One of the most common deformation mechanisms in zeolitic framework is the increase of channels ellipticity. Not all the zeolites experience a P-induced intrusion of new monoatomic species or molecules from the P-transmitting fluids. For example, natural zeolites, with well-stuffed channels at room conditions, tend to hinder the penetration of new species through the zeolitic voids. Several variables govern the sorption phenomena at high pressure: the \u201cfree diameters\u201d of the framework cavities, the configuration of the extraframework population, the partial pressure of the penetrating molecule in the fluid (if mixed with other nonpenetrating molecules), the rate of P-increase, the surface/volume ratio of the crystallites under investigations, the temperature at which the experiment is conducted. The most recent findings allow us to provide an overview of the intrusion phenomena of monoatomic species (e.g., He, Ar, Kr), small (e.g., H2O, CO2) and complex molecules, along with the P-induced polymerization phenomena, (e.g., C2H2, C2H4, C2H6O, C2H6O2, BNH6, electrolytic MgCl2\ub721H2O solution), with potential technological and geological implications. Gatta, G.D. (2008): Does porous mean soft? On the elastic behaviour and structural evolution of zeolites under pressure. Z. Kristallogr., 223, 160-170. Gatta, G.D. & Lee, Y. (2014): Zeolites at high pressure: A review. Mineral. Mag., 78, 267-291. Gatta, G.D., Lotti, P. & Tabacchi, G. (2017): The effect of pressure on open-framework silicates: elastic behaviour and crystal-fluid interaction. Phys. Chem. Minerals, 45, 115-138

    The effect of pressure on open-framework silicates: elastic behaviour and crystal-fluid interaction

    Get PDF
    The elastic behaviour and the structural evolution of microporous materials compressed hydrostatically in a pressure-transmitting fluid are drastically affected by the potential crystal-fluid interaction, with a penetration of new molecules through the zeolitic cavities in response to applied pressure. In this manuscript, the principal mechanisms that govern the P-behaviour of zeolites with and without crystal-fluid interaction are described, on the basis of previous experimental findings and computational modelling studies. When no crystal-fluid interaction occurs, the effects of pressure are mainly accommodated by tilting of (quasi-rigid) tetrahedra around O atoms that behave as hinges. Tilting of tetrahedra is the dominant mechanism at low-mid P-regime, whereas distortion and compression of tetrahedra represent the mechanisms which usually dominate the mid-high P regime. One of the most common deformation mechanisms in zeolitic framework is the increase of channels ellipticity. The deformation mechanisms are dictated by the topological configuration of the tetrahedral framework; however, the compressibility of the cavities is controlled by the nature and bonding configuration of the ionic and molecular content, resulting in different unit-cell volume compressibility in isotypic structures. The experimental results pertaining to compression in "penetrating" fluids, and thus with crystal-fluid interaction, showed that not all the zeolites experience a P-induced intrusion of new monoatomic species or molecules from the P-transmitting fluids. For example, zeolites with well-stuffed channels at room conditions (e.g. natural zeolites) tend to hinder the penetration of new species through the zeolitic cavities. Several variables govern the sorption phenomena at high pressure, among those: the "free diameters" of the framework cavities, the chemical nature and the configuration of the extra-framework population, the partial pressure of the penetrating molecule in the fluid (if mixed with other non-penetrating molecules), the rate of P-increase, the surface/volume ratio of the crystallites under investigations and the temperature at which the experiment is conducted. An overview of the intrusion phenomena of monoatomic species (e.g. He, Ar, Kr), small (e.g. H2O, CO2) and complex molecules, along with the P-induced polymerization phenomena (e.g. C2H2, C2H4, C2H6O, C2H6O2, BNH6, electrolytic MgCl2*21H2O solution) is provided, with a discussion of potential technological and geological implications of these experimental findings

    A multi-methodological study of the (K,Ca)-variety of the zeolite merlinoite

    Get PDF
    A multi-methodological study of the (K,Ca)-variety of the zeolite merlinoite from Fosso Attici, Sacrofano, Italy was carried out on the basis of electron microprobe analysis in wavelength dispersive mode, singlecrystal X-ray diffraction (at 100 K), Raman and infrared spectroscopy. The chemical formula of the merlinoite from Fosso Attici is (Na0.37K5.69)\u3a3=6.06(Mg0.01Ca1.93Ba0.40)\u3a3=2.34(Fe3+0.02Al10.55Si21.38)\u3a3=31.9O64\u38719.6H2O, compatible with the ideal chemical formula K6Ca2[Al10Si22O64]\u38720H2O. Anisotropic structure refinements confirmed the symmetry and the framework model previously reported (space group Immm, a = 14.066(5),b = 14.111(5), c = 9.943(3) \uc5 at 100 K). Refinement converged with four cationic sites and sixH2Osites; refined bond distances of the framework tetrahedra suggest a highly disordered Si/ Al-distribution. The Raman spectrum of merlinoite (collected between 100 and 4000 cm 121) is dominated by a doublet of bands between 496\u2013422 cm 121, assigned to tetrahedral T\u2013O\u2013T symmetric bending modes. T\u2013O\u2013T antisymmetric stretching is also observed; stretching and bending modes of the H2O molecules are only clearly visiblewhen using a blue laser. The single-crystal near-infrared spectrum shows a very weak band at 6823 cm 121, assigned to the first overtone of the O\u2013H stretching mode, and a band at 5209 cm 121, due to the combination of H2O stretching and bendingmodes.Avery broad and convoluted absorption, extending from 3700 to 3000 cm 121 occurs in the H2O stretching region, while the \u3bd2 bending mode of H2O is found at 1649 cm 121. The powder midinfrared spectrum of merlinoite between 400\u20131300 cm 121 is dominated by tetrahedral T\u2013O\u2013T symmetric and antisymmetric stretches. Raman and Fourier-transform infrared spectroscopy spectra of merlinoite and phillipsite provide a quick identification tool for these zeolites, which are often confused due to their close similarity

    Order of [6]Ti4+ in a Ti-rich calcium amphibole from Kaersut, Greenland : a combined X-ray and neutron diffraction study

    Get PDF
    In order to characterize the role of Ti in the crystal structure of calcium amphiboles with high or even dominant oxo-component, the crystal structure of a Ti-rich calcium amphibole from a gabbro at Kaersut, Greenland, has been refined with single-crystal MoK\u3b1 X-ray intensity data to an R1(F) index of ~0.025, and with single-crystal Laue neutron intensity data to an R1(F) index of ~0.053. The crystal used for X-ray structure refinement was characterized by electron- and ion-microprobe analysis. The site populations of the C-group cations Mg, Fe and Ti were calculated from the refined site-scattering values for the M(1), M(2) and M(3) sites derived by both X-ray and neutron diffraction. Ti is distributed among all the three sixfold coordinated M sites, with a strong preference for the M(1) and M(3) sites, where its main role is maintaining electroneutrality at the deprotonated O(3) site. The pattern of distortion of the M(1), M(2) and M(3) octahedra differs from that in F-free deprotonated or partly deprotonated amphiboles, where Ti4+ does not occur at the M(3) site. The neutron structure refinement provides also a clear picture of the environment of the proton, anisotropic displacement behaviour and potential hydrogen-bonding arrangements. A trifurcated hydrogen-bonding configuration has been identified, with two O(6) and one O(7) oxygen atoms as acceptors of weak hydrogen-bonds

    Comparative compressional behavior of chabazite with Li+, Na+, Ag+, K+, Rb+, and Cs+ as extra-framework cations

    Get PDF
    The high-pressure behavior of monovalent-cation-exchanged chabazites was investigated by means of in situ synchrotron X-ray powder diffraction with a diamond-anvil cell, and using water as penetrating pressure-transmitting medium, up to 5.5 GPa at room temperature. In all cases, except for Na-containing chabazites, a phase transition from the original rhombohedral (R3m) to triclinic symmetry (likely P1) was observed in the range between 3.0 GPa and 5.0 GPa. The phase transition is accompanied by an abrupt decrease of the unit-cell volume by up to 10%. Evidence of pressure-induced hydration (PIH), i.e., P-induced penetration of H2O molecules through the zeolitic cavities, was observed, as reflected by the incompressibility of the cation-exchanged chabazites, which is governed by the distribution of the extra-framework cations. The reversibility of the PIH and P-induced phase transitions in the high-pressure behavior of the cation-exchanged chabazites are discussed in the context of the role played by the chemical nature and bonding configuration of the extra-framework cations, along with that of the H2O content at room conditions

    H-bonding in lazulite: a single-crystal neutron diffraction study at 298 and 3 K

    Get PDF
    The crystal structure and crystal chemistry of a lazulite from Crosscut Creek (Kulan Camp area, Dawson mining district, Yukon, Canada) was investigated by electron microprobe analysis in wavelength-dispersive mode (EMPA) and single-crystal neutron diffraction at 298 and 3 K. Its empirical formula, based on EMPA data, is: (Mg0.871Fe0.127)\u3a30.998Al2.030(P1.985Ti0.008Si0.007O4)2(OH)2. The neutron diffraction experiments at room and low T proved that the H-free structural model of lazulite previously reported, on the basis of X-ray structure refinement, is correct: the building unit of the lazulite structure consists of a group of three face-sharing (Al-octahedron) + (Mg,Fe-octahedron) + (Aloctahedron), connected to the adjacent one via a corner-shared OH-group and two corner-shared oxygen sites of the P-tetrahedron, to form a dense 3D-edifice. Only one crystallographically independent H site occurs in the structure of lazulite, forming a hydroxyl group with the O5 oxygen, with O5\u2013H = 0.9997 \uc5 at room temperature (corrected for riding motion effect). The H-bonding scheme in the structure of lazulite is now well defined: a bifurcated bonding scheme occurs with the O4 and O2 oxygen sites as acceptors. The two H-bonds are energetically different, as shown by their bonding geometry: the H-bond with the O2 site as acceptor is energetically more favorable, being O5\u2013H\ub7\ub7\ub7O2 = 152.67(9)\ub0, O5\ub7\ub7\ub7O2 = 3.014(1) \uc5 and H\ub7\ub7\ub7O2 = 2.114(1) \uc5, whereas that with O4 as acceptor is energetically more costly, being O5\u2013H\ub7\ub7\ub7O4 = 135.73(8)\ub0, O5\ub7\ub7\ub7O4 = 3.156(1) \uc5 and H\ub7\ub7\ub7O4 = 2.383(1) \uc5, at room temperature. No T-induced phase transition occurs within the T-range investigated. At low temperature, the O5\u2013H\ub7\ub7\ub7O2 bond is virtually identical to the room-T one, whereas the effects of T on O5\u2013H\ub7\ub7\ub7O4 are more pronounced, with significant differences of the Odonor\ub7\ub7\ub7Oacceptor and H\ub7\ub7\ub7Oacceptor distances. The experimental findings of this study do not support the occurrence of HPO4 or H2PO4 units into the structure of lazulite, recently reported on the basis of infrared and Raman spectra

    Strain partitioning in host rock controls LREE release from allanite-(Ce) in subduction zones

    Get PDF
    Combined microstructural, mineral chemical, X-ray maps, and X-ray single-crystal diffraction analyses are used to reveal the rheological behaviour of individual grains of magmatic allanite relicts hosted in variably deformed metagranitoids at Lago della Vecchia (inner part of the Sesia-Lanzo Zone, Western Alps, Europe), which experienced high pressure and low temperature metamorphism during the Alpine subduction. X-ray single crystal diffraction shows that none of the allanite crystals, irrespective of the strain state of the host rock, record any evidence of plastic deformation (i.e., intracrystalline deformation), as indicated by the shape of the Bragg diffraction spots, the atomic site positions, and their displacement around the centre of gravity. On the contrary, strong plastic deformation affected matrix minerals, such as quartz, white mica, and feldspar of the hosting rocks, during the development of the Alpine eclogitic- and blueschist-facies metamorphism. Despite the strain-free atomic structures of allanite, different patterns of chemical zoning, as a function of strain accumulated in the rock matrix, are observed. Since allanite occurs in magmatic and metamorphic rocks and it is stable at high pressure and low temperature conditions, we infer that allanite could behave as one of the main carriers of light-rare-earth-elements into the mantle wedge during subduction of continental crust. In particular, the release of light-rare-earth-elements from allanite, under high pressure conditions in subduction zones, is facilitated by high strain accumulated in the host rock

    High-pressure behavior of synthetic mordenite-Na: an in situ single-crystal synchrotron X-ray diffraction study

    Get PDF
    The high-pressure behavior of a synthetic mordenite- Na (space group: Cmcm or Cmc21) was studied by in situ single-crystal synchrotron X-ray diffraction with a diamond anvil cell up to 9.22(7) GPa. A phase transition, likely displacive in character, occurred between 1.68(7) and 2.70(8) GPa, from a C-centered to a primitive space group: possibly Pbnm, Pbnn or Pbn21. Fitting of the experimental data with III-BM equations of state allowed to describe the elastic behavior of the high-pressure polymorph with a primitive lattice. A very high volume compressibility [KV0 = 25(2) GPa, \u3b2V0 = 1/KV0 = 0.040(3) GPa\u20131; KV\u2032 = ( 02KV/ 02P)T = 2.0(3)], coupled with a remarkable elastic anisotropy (\u3b2b > > \u3b2c > \u3b2a), was found. Interestingly, the low-P and high-P polymorphs show the same anisotropic compressional scheme. A structure collapse was not observed up to 9.22(7) GPa, even though a strong decrease of the number of observed reflections at the highest pressures suggests an impending amorphization. The structure refinements performed at room-P, 0.98(2) and 1.68(7) GPa allowed to describe, at a first approximation, the mechanisms that govern the framework deformation in the low-P regime: the bulk compression is strongly accommodated by the increase of the ellipticity of the large 12-membered ring channels running along [001]

    Zeolites at high pressure : a review

    Get PDF
    This is a review of the elastic behaviour and pressure (P)-induced structural evolution of zeolites and presents a comparative analysis of the deformation mechanisms of the Si/Al-framework and the rearrangement of the extra-framework species in response to applied pressure. The interaction between P-transmitting fluids and zeolites, which can lead to phenomena such as 'P-induced over-hydration', is described. The comparative elastic analysis and the high-P structural data of zeolites reported so far allow us to make some generalizations: (1) The range of compressibility among this class of openframework silicates is large, with bulk moduli ranging between 15 and 70 GPa; (2) Microporosity does not necessarily imply high compressibility, as several zeolites are less compressible than other non-zeolitic rock-forming minerals; (3) Compressibilities of zeolites do not seem to be directly related to microporosity, at least if we model microporosity with the 'framework density'; (4) The flexibility observed in zeolites under hydrostatic compression is mainly governed by tilting of rigid tetrahedra around O atoms that behave as hinges within the framework. Pressure-induced tilting commonly leads to continuous rearrangement of the framework without any phase transition. More rarely, tilting induces displacive phase transitions and isothermal P-induced reconstructive phase transitions (i.e. with change in framework topology), have not been reported in this class of materials; (5) Deformation mechanisms in response to applied pressure are generally dictated by the topological configuration of the framework rather than the Si/Al-distribution or the extra-framework content. The channel content governs the compressibility of the cavities, leading to different unit-cell-volume compressibilities in isotypic structures
    • …
    corecore