1,450 research outputs found
Enhanced superconducting properties of rare-earth oxides and graphene oxide added MgB₂
In this paper, the effects of addition of (i) graphene oxide (GO), (ii) a series of rare-earth (RE, RE = La, Sm, Eu, Gd, Tb and Ho) oxides (REO) and (iii) a mixture of GO and rare-earth oxides (GO + REO) on the superconducting properties of MgB₂, have been studied with the help of electrical transport and magnetic measurements. All the samples have been prepared following the standard solid-state reaction route. We have used an optimum value of 1 wt% REO and 3 wt% GO for addition on the basis of previous studies. X-ray diffraction studies confirm the formation of hexagonal crystal structure (space group P6/mmm) of MgB₂ with small amounts of REBx (x = 4 and 6) and MgO impurity phases in all the synthesized samples. We observe that the critical current density, Jc and upper critical field Hc2(0) improve significantly in the REO-added and GO-added samples with no significant change in critical temperature, Tc. A substantial enhancement in Jc(H) and Hc2(0) is observed with the GO + REO addition in MgB₂. The different flux pinning mechanisms in all the samples are studied and it is found that the point pinning is the dominant mechanism in the GO-added samples and grain boundary pinning is the dominant one in the REO added samples. We have seen the combined effect of both types of flux pinning mechanisms in GO + REO added MgB₂
Hyperspherical partial wave theory applied to electron hydrogen-atom ionization calculation for equal energy sharing kinematics
Hyperspherical partial wave theory has been applied here in a new way in the
calculation of the triple differential cross sections for the ionization of
hydrogen atoms by electron impact at low energies for various
equal-energy-sharing kinematic conditions. The agreement of the cross section
results with the recent absolute measurements of R\"oder \textit {et al} [51]
and with the latest theoretical results of the ECS and CCC calculations [29]
for different kinematic conditions at 17.6 eV is very encouraging. The other
calculated results, for relatively higher energies, are also generally
satisfactory, particularly for large geometries. In view of the
present results, together with the fact that it is capable of describing
unequal-energy-sharing kinematics [35], it may be said that the hyperspherical
partial wave theory is quite appropriate for the description of ionization
events of electron-hydrogen type systems. It is also clear that the present
approach in the implementation of the hyperspherical partial wave theory is
very appropriate.Comment: 16 pages, 9 figures, LaTeX file and EPS figures. To appear in Phys.
Rev.
Intrasubband and Intersubband Electron Relaxation in Semiconductor Quantum Wire Structures
We calculate the intersubband and intrasubband many-body inelastic Coulomb
scattering rates due to electron-electron interaction in two-subband
semiconductor quantum wire structures. We analyze our relaxation rates in terms
of contributions from inter- and intrasubband charge-density excitations
separately. We show that the intersubband (intrasubband) charge-density
excitations are primarily responsible for intersubband (intrasubband) inelastic
scattering. We identify the contributions to the inelastic scattering rate
coming from the emission of the single-particle and the collective excitations
individually. We obtain the lifetime of hot electrons injected in each subband
as a function of the total charge density in the wire.Comment: Submitted to PRB. 20 pages, Latex file, and 7 postscript files with
Figure
Coulomb scattering lifetime of a two-dimensional electron gas
Motivated by a recent tunneling experiment in a double quantum-well system,
which reports an anomalously enhanced electronic scattering rate in a clean
two-dimensional electron gas, we calculate the inelastic quasiparticle lifetime
due to electron-electron interaction in a single loop dynamically screened
Coulomb interaction within the random-phase-approximation. We obtain excellent
quantitative agreement with the inelastic scattering rates in the tunneling
experiment without any adjustable parameter, finding that the reported large
( a factor of six) disagreement between theory and experiment arises from
quantitative errors in the existing theoretical work and from the off-shell
energy dependence of the electron self-energy.Comment: 11 pages, RevTex, figures included. Also available at
http://www-cmg.physics.umd.edu/~lzheng
Proton Differential Elliptic Flow and the Isospin-Dependence of the Nuclear Equation of State
Within an isospin-dependent transport model for nuclear reactions involving
neutron-rich nuclei, we study the first-order direct transverse flow of protons
and their second-order differential elliptic flow as a function of transverse
momentum. It is found that the differential elliptic flow of mid-rapidity
protons, especially at high transverse momenta, is much more sensitive to the
isospin dependence of the nuclear equation of state than the direct flow.
Origins of these different sensitivities and their implications to the
experimental determination of the isospin dependence of the nuclear equation of
state by using neutron-rich heavy-ion collisions at intermediate energies are
discussed.Comment: 15 pages, 6 figures. Phys. Rev. C (2001) in pres
Electron-electron interactions and two-dimensional - two-dimensional tunneling
We derive and evaluate expressions for the dc tunneling conductance between
interacting two-dimensional electron systems at non-zero temperature. The
possibility of using the dependence of the tunneling conductance on voltage and
temperature to determine the temperature-dependent electron-electron scattering
rate at the Fermi energy is discussed. The finite electronic lifetime produced
by electron-electron interactions is calculated as a function of temperature
for quasiparticles near the Fermi circle. Vertex corrections to the random
phase approximation substantially increase the electronic scattering rate. Our
results are in an excellent quantitative agreement with experiment.Comment: Revtex style, 21 pages and 8 postscript figures in a separate file;
Phys. Rev. B (in press
Origin of strange metallic phase in cuprate superconductors
The origin of strange metallic phase is shown to exist due to these two
conditions---(i) the electrons are strongly interacting such that there are no
band and Mott-Hubbard gaps, and (ii) the electronic energy levels are crossed
in such a way that there is an electronic energy gap between two energy levels
associated to two different wave functions. The theory is also exploited to
explain (i) the upward- and downward-shifts in the -linear resistivity
curves, and (ii) the spectral weight transfer observed in the soft X-ray
absorption spectroscopic measurements of the La-Sr-Cu-O Mott insulator.Comment: To be published in J. Supercond. Nov. Mag
Nonlinear ion-acoustic (IA) waves driven in a cylindrically symmetric flow
By employing a self-similar, two-fluid MHD model in a cylindrical geometry,
we study the features of nonlinear ion-acoustic (IA) waves which propagate in
the direction of external magnetic field lines in space plasmas. Numerical
calculations not only expose the well-known three shapes of nonlinear
structures (sinusoidal, sawtooth, and spiky or bipolar) which are observed by
numerous satellites and simulated by models in a Cartesian geometry, but also
illustrate new results, such as, two reversely propagating nonlinear waves,
density dips and humps, diverging and converging electric shocks, etc. A case
study on Cluster satellite data is also introduced.Comment: accepted by AS
From thermal rectifiers to thermoelectric devices
We discuss thermal rectification and thermoelectric energy conversion from
the perspective of nonequilibrium statistical mechanics and dynamical systems
theory. After preliminary considerations on the dynamical foundations of the
phenomenological Fourier law in classical and quantum mechanics, we illustrate
ways to control the phononic heat flow and design thermal diodes. Finally, we
consider the coupled transport of heat and charge and discuss several general
mechanisms for optimizing the figure of merit of thermoelectric efficiency.Comment: 42 pages, 22 figures, review paper, to appear in the Springer Lecture
Notes in Physics volume "Thermal transport in low dimensions: from
statistical physics to nanoscale heat transfer" (S. Lepri ed.
The T2K ND280 Off-Axis Pi-Zero Detector
The Pi-Zero detector (P{\O}D) is one of the subdetectors that makes up the
off-axis near detector for the Tokai-to-Kamioka (T2K) long baseline neutrino
experiment. The primary goal for the P{\O}D is to measure the relevant cross
sections for neutrino interactions that generate pi-zero's, especially the
cross section for neutral current pi-zero interactions, which are one of the
dominant sources of background to the electron neutrino appearance signal in
T2K. The P{\O}D is composed of layers of plastic scintillator alternating with
water bags and brass sheets or lead sheets and is one of the first detectors to
use Multi-Pixel Photon Counters (MPPCs) on a large scale.Comment: 17 pages, submitted to NIM
- …