9 research outputs found

    Biochemical characterization of cassiopea andromeda (Forssk\ue5l, 1775), another red sea jellyfish in the western mediterranean sea

    Get PDF
    Increasing frequency of native jellyfish proliferations and massive appearance of non-indigenous jellyfish species recently concur to impact Mediterranean coastal ecosystems and human activities at sea. Nonetheless, jellyfish biomass may represent an exploitable novel resource to coastal communities, with reference to its potential use in the pharmaceutical, nutritional, and nutraceutical Blue Growth sectors. The zooxanthellate jellyfish Cassiopea andromeda, Forssk\ue5l, 1775 (Cnidaria, Rhizostomeae) entered the Levant Sea through the Suez Canal and spread towards the Western Mediterranean to reach Malta, Tunisia, and recently also the Italian coasts. Here we report on the biochemical characterization and antioxidant activity of C. andromeda specimens with a discussion on their relative biological activities. The biochemical characterization of the aqueous (PBS) and hydroalcoholic (80% ethanol) soluble components of C. andromeda were performed for whole jellyfish, as well as separately for umbrella and oral arms. The insoluble components were hydrolyzed by sequential enzymatic digestion with pepsin and collagenase. The composition and antioxidant activity of the insoluble and enzymatically digestible fractions were not affected by the pre-extraction types, resulting into collagen-and non-collagen-derived peptides with antioxidant activity. Both soluble compounds and hydrolyzed fractions were characterized for the content of proteins, phenolic compounds, and lipids. The presence of compounds coming from the endosymbiont zooxanthellae was also detected. The notable yield and the considerable antioxidant activity detected make this species worthy of further study for its potential biotechnological sustainable exploitation

    Prostaglandin E2 possesses different potencies in inducing Vascular Endothelial Growth Factor and Interleukin-8 production in COPD human lung fibroblasts

    Get PDF
    We studied the role of PGE2, its biosynthetic enzymes and its receptors, in regulating the functions of lung fibroblasts through the production of Vascular Endothelial Growth Factor (VEGF) and Interleukin-8 (IL-8) in COPD subjects. Lung fibroblasts from Control (C) (n=6), Smoker (HS) (n=6) and COPD patients (n=8) were cultured, and basal PGE2, VEGF, and IL-8 measured in supernatants by ELISA. COX-1/COX-2 and EP receptors expression were assessed by western blot and by RT-PCR. Release of VEGF and IL-8 by human fetal lung fibroblasts (HFL-1; lung, diploid, human) was evaluated under different conditions. PGE2, VEGF, and IL-8 levels, COX-2, EP2, and EP4 protein expression and mRNA were increased in COPD when compared to Controls. Low concentrations of synthetic PGE2 increased the release of VEGF in HFL-1, but higher concentrations were needed to induce the release of IL-8. This effect was mimicked by an EP2 agonist and modulated by an EP4 antagonist. In the airways of COPD subjects, fibroblast-derived PGE2 may regulate angiogenesis and inflammation through the production of VEGF and IL-8 respectively, suggesting that the increase in expression of COX-2, EP2 and EP4 observed in COPD fibroblasts may contribute to steering the role of PGE2 from homeostatic to pro-inflammatory

    Orthogonal persistence revisited

    Get PDF
    The social and economic importance of large bodies of programs and data that are potentially long-lived has attracted much attention in the commercial and research communities. Here we concentrate on a set of methodologies and technologies called persistent programming. In particular we review programming language support for the concept of orthogonal persistence, a technique for the uniform treatment of objects irrespective of their types or longevity. While research in persistent programming has become unfashionable, we show how the concept is beginning to appear as a major component of modern systems. We relate these attempts to the original principles of orthogonal persistence and give a few hints about how the concept may be utilised in the future.Postprin

    IL-33/ST2 axis controls Th2/IL-31 and Th17 immune response in allergic airway diseases

    No full text
    IL-33 targeting ST2 receptor (T1/ST2), expressed on Th2 cell surface, regulates the production of cytokines like IL-17A and IL-31.We studied the role of IL-33/ST2 axis in IL-31 and IL-17A production in patients with allergic rhinitis (AR) and with concomitant allergic asthma and rhinitis (AAR).20 healthy control subjects (HC), 14 AR and 17 AAR subjects were recruited and blood samples collected. IL-33, soluble ST2 (sST2), IL-17A and IL-31 plasma concentrations were measured by ELISA method. T1/ST2, IL-31 and IL-17A cellular expression were studied in peripheral blood mononuclear cells (PBMC) from HC, AR and AAR (n =6 for each group) by flow-cytometry. In vitro, we also evaluated the effect of beclomethasone dipropionate (BDP) on T1/ST2, IL-31 and IL-17A expression in CD3+T-cells from PBMC of AAR (n =6).Plasma levels of IL-33, IL-31 and IL-17A were significantly higher and sST2 was lower in patients with AR and AAR than in HC. IL-31 and IL-17A intracellular levels significantly increased, whereas T1/ST2 expression was significantly lower, in CD3+T-cells from AR and AAR compared to HC. Positive correlations were observed between plasmatic components of IL-33/ST2 axis and IL-31 in both AR and AAR and IL-17A in AAR. In vitro IL-31 and IL-17A intracellular levels decreased after BDP treatment, whereas T1/ST2 expression increased in cultured CD3+T-cells obtained from AAR.IL-33/ST2 axis is involved in Th2/IL-31 and Th17 immune response during the progression of allergic airway disease. In vitro BDP is able to control Th2/IL-31 and Th17 immune response in PBMC from allergic patients

    IL-33/ST2 axis controls Th2/IL-31 and Th17 immune response in allergic airway diseases

    No full text
    IL-33 targeting ST2 receptor (T1/ST2), expressed on Th2 cell surface, regulates the production of cytokines like IL-17A and IL-31.We studied the role of IL-33/ST2 axis in IL-31 and IL-17A production in patients with allergic rhinitis (AR) and with concomitant allergic asthma and rhinitis (AAR).20 healthy control subjects (HC), 14 AR and 17 AAR subjects were recruited and blood samples collected. IL-33, soluble ST2 (sST2), IL-17A and IL-31 plasma concentrations were measured by ELISA method. T1/ST2, IL-31 and IL-17A cellular expression were studied in peripheral blood mononuclear cells (PBMC) from HC, AR and AAR (n =6 for each group) by flow-cytometry. In vitro, we also evaluated the effect of beclomethasone dipropionate (BDP) on T1/ST2, IL-31 and IL-17A expression in CD3+T-cells from PBMC of AAR (n =6).Plasma levels of IL-33, IL-31 and IL-17A were significantly higher and sST2 was lower in patients with AR and AAR than in HC. IL-31 and IL-17A intracellular levels significantly increased, whereas T1/ST2 expression was significantly lower, in CD3+T-cells from AR and AAR compared to HC. Positive correlations were observed between plasmatic components of IL-33/ST2 axis and IL-31 in both AR and AAR and IL-17A in AAR. In vitro IL-31 and IL-17A intracellular levels decreased after BDP treatment, whereas T1/ST2 expression increased in cultured CD3+T-cells obtained from AAR.IL-33/ST2 axis is involved in Th2/IL-31 and Th17 immune response during the progression of allergic airway disease. In vitro BDP is able to control Th2/IL-31 and Th17 immune response in PBMC from allergic patients

    HETEROMETALLIC TIN COMPOUNDS: CLASSIFICATION AND ANALYSIS OF CRYSTALLOGRAPHIC AND STRUCTURAL DATA: PART 1. DIMERIC DERIVATIVES

    No full text
    corecore