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Summary 

We studied the role of PGE2, its biosynthetic enzymes and its receptors, in regulating the functions of lung 

fibroblasts through the production of Vascular Endothelial Growth Factor (VEGF) and Interleukin-8 (IL-8) in 

COPD subjects. 

Lung fibroblasts from Control (C) (n=6), Smoker (HS) (n=6) and COPD patients (n=8) were cultured, and basal 

PGE2, VEGF, and IL-8 measured in supernatants by ELISA. COX-1/COX-2 and EP receptors expression were 

assessed by western blot and by RT-PCR. Release of VEGF and IL-8 by human fetal lung fibroblasts (HFL-1; 

lung, diploid, human) was evaluated under different conditions. 

PGE2, VEGF, and IL-8 levels, COX-2, EP2, and EP4 protein expression and mRNA were increased in COPD 

when compared to Controls. Low concentrations of synthetic PGE2 increased the release of VEGF in HFL-1, but 

higher concentrations were needed to induce the release of IL-8. This effect was mimicked by an EP2 agonist and 

modulated by an EP4 antagonist. 

In the airways of COPD subjects, fibroblast-derived PGE2 may regulate angiogenesis and inflammation through 

the production of VEGF and IL-8 respectively, suggesting that the increase in expression of COX-2, EP2 and EP4 

observed in COPD fibroblasts may contribute to steering the role of PGE2 from homeostatic to pro-inflammatory. 
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1. Introduction 

Prostaglandin E2 (PGE2), is a metabolite derived from arachidonic acid by the coordinated activity of 

cyclooxygenase and prostaglandin E synthase enzymes, and cigarette smoke is known to increase the expression of 

both cyclooxygenase-2 (COX-2) and prostaglandin E synthase in human fibroblasts [1]. PGE2 has the potential to 

function as both an autocrine and a paracrine mediator in fibroblasts, affecting chemotactic recruitment [2][3], 

proliferation [4], matrix production [5,6], and matrix remodeling [7,8]. PGE2 acts on four distinct G protein–

coupled E-prostanoid (EP) receptors named EP1, EP2, EP3, and EP4, [9,10], and coupled to different transduction 

mechanisms such as the increase in intracellular cyclic adenosine monophosphate (cAMP, EP2 and EP4), the 

decrease in cAMP (EP3), and the increase in intracellular calcium (EP1) [11][12]. Through the interaction with 

these receptors, PGE2 mediates a variety of physiologic responses [10,13,14].  

Alterations in fibroblast functions could play a role in the pathogenesis of pulmonary emphysema during COPD, 

which is characterized by inadequate maintenance of tissue structure [15]. Fibroblasts are a major source of 

vascular endothelial growth factor (VEGF), which modulates pulmonary microvasculature promoting the 

angiogenesis by alveolar endothelial cells. Prostacyclin analogues stimulate the production of VEGF by human 

lung fibroblasts, an effect mediated by the I-prostanoid receptor acting through the cAMP/protein kinase–A (PKA) 

pathway [16]. Similarly, it has recently been observed that PGE2 stimulates the production of VEGF through the 

activation of the Gs-coupled EP2 receptor in cultured human lung fibroblasts [4]. Furthermore, PGs are known to 

increase IL-8 release by fibroblasts [17], playing also a potentially important role in COPD airway chronic 

inflammation [18].  

In this study, we evaluated the release of PGE2, VEGF, and IL-8 as well as the expression of COX-2 and EP 

receptors in cultured fibroblasts obtained from COPD patients, smoker, and control subjects. Furthermore, since 

we observed a positive correlation between PGE2 concentrations and VEGF or IL-8 in the supernatants of cultured 

fibroblasts obtained from COPD patients, we studied the effect of PGE2 on VEGF and IL-8 production in human 

fibroblasts, in order to understand the potential contribution of PGE2 to angiogenesis and inflammation within the 

airways of COPD subjects. 
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2. Materials and Methods 

2.1. Study population 

Three groups of subjects who underwent lung resection for a solitary peripheral lung cancer were recruited: 

Chronic obstructive pulmonary disease (COPD) (n=8), asymptomatic smokers with normal lung function (n=6) 

(HS), and asymptomatic non-smoking subjects with normal lung function (n=6) (C). COPD patients were defined 

accordingly to the GOLD guidelines [19] and were classified as stage I-II (Mild to Moderate COPD). Patients with 

COPD and HS subjects had a smoking history of 10 pack years or more. Four of the COPD patients are former 

smokers and had quit smoking for at least 2 yr before the lung resection. All patients were characterized with 

respect to sex, age, smoking history, COPD symptoms, co-morbidities and current treatment. Exclusion criteria 

included the following: other systemic diseases, other lung diseases apart from COPD and lung tumors, upper 

respiratory tract infections and treatment with glucocorticoids or anticholinergics within the 3 months prior to the 

study. 

The study protocol was approved by the Ethic Committee (#217806-30/06/2008) and informed written consent 

was obtained from each patient. 

2.2. Pulmonary function tests. 

Pulmonary function tests were carried out according to the GOLD guidelines [19]. To assess the 

reversibility of the airway obstruction in subjects with a FEV1/FVC <70%, the FEV1 measurement was repeated 

15 minutes after the inhalation of 200 µg of salbutamol. 

2.3. Isolation and culture of lung fibroblasts from patients. 

Tumor free material and nontraumatic tissue from surgical specimens were used. Human lung fibroblasts 

were isolated from surgical specimens of human bronchi as previously described [20]. To confirm the purity of the 

cultured fibroblasts, the recovered cells were identified by their morphology, adherent nature, expression of 

vimentin and types I and III collagen, and lack of expression of cytokeratin, α-smooth muscle actin, factor VIII 
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and CD45. Immunoreactivity for these markers was revealed using the LSAB method (Dako LSAB®, 

Glostrup, Denmark) following the manufacturer’s instructions. 

Purified lung fibroblasts from COPD, HS, and C subjects were grown in a humidified atmosphere containing 5% 

CO2, and passaged by trypsinization at nearly confluence onto 100 mm culture plates as previously described [20]. 

Subsequently, after additional 24 hrs under FBS-free conditions (5% CO2 at 37°C), supernatants of monolayer 

cultures were harvested and stored at -80°C until assayed for basal PGE2, VEGF, and IL-8 levels. At the same time 

lung fibroblasts were detached and treated for protein and mRNA extraction. Only early passage cells (1-3) were 

used for each experiment to avoid problems that may occur in the higher number of cell passages and the 

biological analyses. 

2.4. Measurement of PGE2, VEGF, and IL-8. 

PGE2 levels were quantified by a commercial ELISA (GE Healthcare, Uppsala, Sweden) according to the 

manufacturer’s protocol. The detection limit was 40 pg/ml. VEGF and IL-8 were quantified in the supernatants of 

monolayer cultures by commercial ELISA kits (R&D Systems Europe Ltd, Abington, UK). Sensitivity was 5.0 

pg/ml and 3.5 pg/ml for VEGF and IL-8, respectively. Absorbance was measured using a Wallac 1420 Victor2 

multilabel counter (Perkin-Elmer Life Sciences, Turku, Finland). 

2.5. Western blot analyses of COX-1 and COX-2 proteins and EP receptors expression. 

Total protein extracts from cultured lung fibroblasts of COPD, control smoker and control subjects were 

resuspended in 2x Laemmli buffer and separated by SDS-PAGE followed by electroblotting onto nitrocellulose 

membranes for COX-1, COX-2, and EP receptors protein expressions. The following antibodies were used: a 

mouse monoclonal antibody direct against human COX-1 or COX-2 (Cayman Chem, MI, Italy), a rabbit 

polyclonal antibody directed against the human EP1, EP2, EP3 or EP4 receptor (Cayman Chem, MI, Italy). 

Primary antisera were visualized with HRP-conjugated secondary antibody (Sigma St. Louis, MO) and developed 

with an enhanced chemiluminescence system (Amersham Life Sciences UK Limited). Approximate molecular 

masses were determined using calibrated pre-stained standards (Amersham Life Sciences UK Limited). Negative 
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controls were performed in the absence of primary antibody or including an isotype control antibody. β-

actin (Sigma St. Louis, MO) was used as a housekeeping protein to normalize western blot analyses. Gel images 

were taken with an EPSON GT-6000 scanner and then imported to a National Institutes of Health Image analyses 

1.61 program to determine band intensity. Data are expressed as arbitrary densitometric units corrected against the 

density of β-actin bands. 

2.6. Quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) of COX-2 and EP 

receptors. 

Total RNA was extracted from patient fibroblasts with TRIzol Reagent (Invitrogen, Carlsbad, CA, USA) 

following the manufacturer’s instructions, and was reverse-transcribed into cDNA, using M-MLV-RT and 

oligo(dT)12-18 primer (Invitrogen). Quantitative real-time PCR of the transcripts for COX-2 and for both EP2 and 

EP4 receptor subtypes of human PGE2 receptors was carried out on Step One Plus Real-time PCR System 

(Applied Biosystems, Foster City, CA, USA) using specific FAM-labeled probe and primers (prevalidated 

TaqMan Gene expression assay for COX-2, Hs00153133m1, and for EP2, and EP4 receptors, Assays on Demand, 

Applied Biosystems). Gene expression was normalized to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 

control gene. Relative quantitation of gene expression level between C and HS or COPD subjects was evaluated 

with the comparative CT method (2-ΔΔCt). Relative expression levels were presented as the relative fold increase 

compared to the healthy subjects and calculated using the formula: 2 -ΔΔCT= 2-(ΔCT(HS or COPD) - ΔCT(C), 

where each ΔCT =ΔCTtarget-ΔCTGAPDH [21]. 

 

2.7. HFL-1 culture. 

Human fetal lung fibroblasts (HFL-1; lung, diploid, human) (from American Type Culture Collection, 

Manassas V.A.) were cultured in 100 mm tissue culture dishes (Falcon; Becton-Dickinson Labware, Lincoln Park, 

NJ) with RPMI1640 supplemented with 10% FCS, 2 mM glutamine, 25 mM HEPES buffer, 1% MEM non 

essential aminoacids, 100 U/ml penicillin, 100 mg/ml streptomycin, and 2.5 µg/ml fungizone. Cells were refed 
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twice a week, subcultured weekly and maintained in 10% FCS RPMI1640. Fibroblasts between passages 15 

and 20 were used for all experiments. The HFL-1 cell line was used in the present study because of difficulty in 

obtaining sufficient quantities of primary human lung airway fibroblasts for these experiments. 

2.8. Stimulation of HFL-1 cells and PGE2 depletion in supernatants from lung fibroblasts. 

To evaluate the relationship between PGE2 concentration and the release of VEGF and IL-8, HFL-1 cells 

(1.5 x 106/ml) were plated in 100 mm tissue culture dishes for 18 hrs in the presence or absence of exogenous 

synthetic PGE2 at different concentrations (10-9 to 10-6 M, Sigma Aldrich, Milan, Italy). To test the contribution of 

different levels of paracrine PGE2 present in cultured lung fibroblast supernatants on VEGF and IL-8 release, 

HFL-1 cells (1.5 x 106/ml) were stimulated for 18 hrs in the presence or absence of selected supernatants with low 

(<10-9 M, n=3) or high (>10-8 M, n=3) PGE2 levels. Selected supernatants from lung fibroblasts were added diluted 

1:2 with culture medium for HFL-1 stimulation.  

To determine the specific effect of paracrine PGE2 present in cultured lung fibroblast supernatant on VEGF 

and IL-8, selected samples showing high (>10-8 M, n=3) PGE2 concentrations were incubated in the presence or 

absence of PGE2 affinity sorbent (mouse anti-PGE2 IgG covalently bound to Sepharose 4B) (Cayman Chemical). 

The affinity sorbent was used to eliminate the PGE2 from supernatants as previously described [22]. Finally, HFL-

1 cells were stimulated for 18 hrs with selected supernatants from lung fibroblast depleted of PGE2. 

To evaluate the role of EP receptors, we stimulated HFL-1 cell line with Butaprost (Sigma, 10-6 M, EP2 

agonist), Sulprostone (Sigma, 10-5 M, EP1/EP3 agonist)[23] or supernatants of lung fibroblasts from COPD in 

presence or absence of SC 19220 (Sigma, 10-5 M, EP1 antagonist) or AH23848 (Sigma, 10-5 M EP4 antagonist). 

Antagonists were added to the HFL-1 1 hr before the stimulation with supernatants of lung fibroblasts from COPD 

patients selected with a level of PGE2 >10-8 M. 
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2.9. Statistical analysis. 

Data are expressed as mean+SD. Statistical analysis for multiple comparison was carried out using Kruskal-

Wallis and Mann-Whitney U test or non parametric ANOVA tests followed by Fisher’s PLDS correction. A 

p<0.05 was considered as statistically significant. 
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3. Results 

3.1. Demographic characteristic of the patients 

The patients’ characteristics are summarized in Table I. The differences in the median ages or smoking 

history of Controls, Smokers and subjects with COPD were not statistically significant. As expected, FEV1% 

after bronchodilators as well as FEV1%/FVC were significantly lower in COPD patients than HS (p<0.001)  and 

C (p < 0.001). 

3.2. PGE2, VEGF, and IL-8 levels in human lung fibroblasts 

The concentrations of PGE2 in supernatants from lung fibroblasts of COPD patients were significantly 

higher than in supernatants obtained from C. HS showed higher PGE2 levels compared to C, but no statistically 

significant difference was observed (Figure 1A).  

VEGF concentration were higher in supernatants from lung fibroblasts of both HS and COPD when 

compared to C (Figure 1B), while only the concentrations of IL-8 in supernatants from lung fibroblasts of COPD 

subjects showed statistically significant difference from C (Figure 1C).  

3.3. COX-1, COX-2, EP1, EP2, EP3 and EP4 protein expression and mRNA in human lung fibroblasts. 

Western blot analyses of COX-1 and COX-2 proteins in cell lysates showed a significant increase in 

COX-2 expression by lung fibroblasts of Smokers and COPD subjects when compared to Controls (Figure 2A), 

while no differences were observed in COX-1 expression. The expression of EP2 and EP4 receptors was also 

significantly higher in the cell protein extracts from lung fibroblasts of COPD subjects compared to both HS and 

C (Figure 2B), while the expression of EP1 and EP3 receptor was not different among the three groups (Figure 

2B). The changes in protein expression resulted associated with changes in transcription levels as confirmed by 

the analysis of COX-2, EP2 and EP4 mRNAs (Figure 3A-C). 
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3.4. VEGF and IL-8 release in stimulated HFL-1. 

Synthetic PGE2 (10-9 to 10-6 M, a range of concentrations likely to mimic the differences observed in the 

pulmonary microenvironment in the absence or presence of phlogosis and inflammatory cells [24]) dose-

dependently increased the production of VEGF and IL-8 in stimulated HFL-1 (Figure 4A-B). Interestingly, the 

maximal release of IL-8 was observed at the highest concentration of PGE2 tested (namely 10-6 M, Figure 4B), 

with the EC50 for this effect certainly higher than 10-7 M, while the maximal efficacy on VEGF release was 

already observed at the PGE2 concentration of 10-7 M, with the concentration of 10-8 M representing the EC50 for 

this effect of PGE2 (Figure 4A). 

In order to assess if this differential effect could be observed also using biologically synthesized PGE2 we used 

supernatants of lung fibroblasts presenting either low (<10-9 M) or high (>10-8 M) concentrations of PGE2 to 

challenge HFL-1 cells. The results obtained showed that both COPD fibroblasts supernatants presenting low and 

high PGE2 concentrations significantly increased the production of VEGF (Figure 5A-B top panel). The 

supernatants of COPD lung fibroblasts showing high levels of PGE2 also increased the production of IL-8 in 

stimulated HFL-1 cells (Figure 5B bottom panel) while, according to the different potency observed using 

synthetic PGE2, no increase was observed using supernatants with low PGE2 concentrations (Figure 5A bottom 

panel). Finally, depleting the PGE2 present in the supernatants of COPD lung fibroblasts significantly decreased 

their ability to induce the production and release of VEGF or IL-8 in HFL-1 stimulated with supernatants from 

lung fibroblasts showing high levels of PGE2 (Figure 5C bottom panel). 

 

3.5. EP receptors role in the production of VEGF and IL-8 by PGE2 

To confirm the role of EP receptors in the production of VEGF (1) and IL-8 generated by PGE2 

stimulation, we used specific agonists and antagonists for the different EP receptor subtypes. The specific EP2 

receptor agonists Butaprost (10-6 M) significantly increased the production of VEGF as well as that of IL-8 in 

HFL-1, while the EP1/EP3 receptor agonist Sulprostone (10-5 M) did not affect the release of either VEGF or IL-

8 in HFL-1 (Figure 6A). Interestingly, the preincubation of HFL-1 with the specific EP4 receptor antagonist AH-
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23848 (10-5 M) caused a modest, but significant, reduction of the production of VEGF in HFL-1 stimulated 

with supernatants from COPD fibroblasts compared to baseline conditions, while the use of EP1 receptor 

antagonist SC-19220 (10-5 M) was ineffective (Figure 6B).  
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4. Discussion and Conclusions 

The results of this study provide evidence that lung fibroblasts from COPD patients show increased 

expression of COX-2, EP2, and EP4 receptors, and are able to affect their own production of VEGF and IL-8 

through the synthesis of different concentrations of PGE2. Indeed, in an autocrine/paracrine fashion, nanomolar 

levels of PGE2 are able to increase the production of VEGF, but over 20 folds higher concentrations are needed to 

also affect IL-8 release. Both effects appear to be associated to the activation of EP2, and possibly EP4, receptors 

on human fibroblasts. In light of these activities, we suggest that COX-2 expression/PGE2 synthesis together with 

enhanced expression of EP2/EP4 receptors might represent a switch factor from modulation/maintenance of 

pulmonary microvasculature to inflammation in COPD airways. Important pharmacological implications of these 

findings are associated to cyclooxygenases inhibition by NSAIDs.  

COPD is a disease state characterized by airflow limitation not fully reversible by bronchodilators. The 

airflow limitation is usually progressive and is associated to an abnormal inflammatory response of the lungs to 

noxious particles or gases, primarily cigarette smoking [25]. Pulmonary fibroblasts confer structural support to the 

lung connective tissue and play a role in stimulating and amplifying inflammatory signals through the expression 

of COX-2 and of microsomal prostaglandin E2 synthase in response to cigarette smoke [1]. Cigarette smoke, the 

major risk factor of COPD, also promotes the induction of COX-2 and PGE2 receptor expression in neutrophils 

and alveolar macrophages (AM), therefore contributing to the proinflammatory effects of PGE2 in the airways of 

COPD subjects [24,26]; indeed a significant overlap with minor, but statistically significant, differences was 

observed between HS and COPD subjects in terms of COX-2 and PGE2, but clearcut increases, in agreement with 

previously published data [27], were observed in COPD subjects only for EP2 and EP4 expressions, both as 

mRNA and protein, suggesting that the increase in PGE2-dependent IL-8 formation may be the result of 

concomitant higher PGE2 concentration and enhanced receptor expression when compared to C.,  

Fibroblasts are the major mesenchymal cells present within the interstitium of the lung and have been shown 

to be a major source of VEGF [4]. VEGF in the lung is required to maintain endothelial cell survival of pulmonary 

capillaries and therefore a normal alveolar wall [28], but VEGF is also an extremely potent pro-angiogenic factor, 



 
13 

and relatively small changes in its concentrations may promote pathological blood vessel expansion. 

Nevertheless the concentrations of VEGF, while higher than C, were not different in supernatants from HS and 

COPD subjects leading to hypothesis that the observed increase may represent the homeostatic response to 

smoking-induced hypoxia, leaving the IL-8 as a marker of the crossing into the COPD chronic inflammatory state. 

We certainly cannot exclude that VEGF may also participate in the inflammatory and fibrotic response observed in 

COPD, but, as recently reported [29], a synergistic effect can be hypothesized to occur when both VEGF and IL-8 

are on-board, while the role of VEGF as an homeostatic response factor may prevail in HS.  

A relevant number of ex vivo and in vitro studies have shown PGE2 to be important in airway inflammation 

and remodeling: PGE2 can modulate extracellular matrix deposition and inflammatory cytokine release, such as 

IL-6 and IL-8, in primary human airway smooth muscle cells and fibroblasts [17]. Indeed, we confirmed that 

synthetic PGE2 also stimulates human fibroblasts to release IL-8, but we found that higher concentrations were 

necessary when compared to that inducing the release of VEGF. These results were confirmed using supernatants 

from COPD lung fibroblasts containing lower (<10-9 M) and higher (>10-8 M) PGE2 concentrations, to stimulate 

the production of VEGF and IL-8 in HFL-1. Indeed, while both groups of supernatants were able to generate 

consistent concentrations of VEGF in stimulated HFL-1 cells, only supernatants with higher concentrations of 

PGE2 were capable of increasing the release of IL-8.  

It must be noted that the final concentrations of VEGF and IL-8 observed using the COPD fibroblast 

supernatants to challenge the HFL-1 cells represents the sum of the amounts synthesized by HFL-1 cells and the 

amounts already present in the supernatant; nevertheless the concentrations observed using the fibroblast 

supernatant resulted higher (by approximately 25% for VEGF and 40% for IL-8) than those observed challenging 

HFL-1 cells with synthetic PGE2. We certainly cannot exclude the presence in the supernatant of factor(s) that may 

potentiate the activity of PGE2 or further contribute to stimulate the formation of VEGF and IL-8, and this may be 

particularly relevant for the latter, given that the depletion of PGE2 from the supernatant only inhibited the increase 

in IL-8 formation by approximately 50%, even if the high variability observed in this measurement may limit the 

relevance of these considerations.  
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Although we cannot rule out the contribution of other eicosanoids (including lipoxygenase-derived 

autacoids [30]), taken together, the findings of our research work suggest and support a role of PGE2 as mediator 

capable of switching the activity of fibroblast from homeostatic maintenance of alveolar endothelium through the 

production of VEGF to an inflammatory cytokine-releasing phenotype supporting the synthesis of IL-8. 

HFL-1-cells are widely used normal human fetal lung fibroblasts known to express all four EP receptors [3]. 

Nevertheless, through the use of selective agonists and antagonist we confirmed the involvement of EP2 receptor, 

and possibly EP4, in the production of VEGF and IL-8 production from lung fibroblasts stimulated with PGE2. 

These results provide additional support to the evidence that the increase of cAMP and, possibly, the activation of 

PKA, are involved in the activation of fibroblasts to release both VEGF and IL-8.  

Previously published evidence showed the increased expression of EP2 and EP4 receptors in COPD [27], as 

well as the ability of cigarette smoke to induce VEGF release from fibroblasts [31] or the positive correlation 

between PGE2 and VEGF [4], but with the present work we provide evidence that different levels of PGE2 

production, as a result of COX-2 expression, can differentiate between the homeostatic pro-angiogenic or the pro-

inflammatory role of this prostanoid, underlining its critical role in normal physiology as well as in COPD 

pathophysiology.  

In conclusion we found that PGE2 biosynthesis and activity are enhanced in lung fibroblasts from COPD 

patients, as a result of an increase in COX-2, EP2 and, possibly, EP4 expression. PGE2 appeared to differentially 

affect the production of VEGF and of IL-8, with higher concentrations needed to steer fibroblasts toward the 

production of inflammatory cytokines during airway inflammation in COPD patients. As a result, while a basal 

production of PGE2 may have an homeostatic role driving the production of VEGF, the increased expression of 

COX-2 and of EP receptors may turn PGE2 into a pro inflammatory factor in COPD subjects. Significant 

inhibition of PGE2 production by NSAIDs may therefore result beneficial in reducing PGE2 concentrations to 

levels observed in basal conditions, reducing IL-8 production without affecting VEGF levels. 
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Tables 

 

Table I: Demographic characteristics of patients 

 Control 
n=6 

Smoker 
n=6 

COPD 
n=8  

Overall  
p value  

Sex, male/female 4/2 4/2 6/2  

Age, yr  64.5 ± 5.8  69.4 ± 7.5  66.3 ± 13.2  N.S. 

FEV1, % predicted 100 ± 9.4  93.3 ± 8.2  72.8 ± 17.5  p < 0.001  

FEV1/FVC, %  95.3 ± 4.9  92.4 ± 7.4  65.9 ± 3.5  p < 0.001 

Smoking, pack/yr 0  54.3 ± 26.2  65.7 ± 21.8  p < 0.001 

     

Data are shown as mean±S.D. Abbreviations: FEV1 = forced expiratory volume in 1 s; FVC = forced vital 

capacity. Statistical analysis for multiple comparisons was performed by Kruskal-Wallis test 
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Captions to Illustrations 

Figure 1: PGE2 (Panel A), VEGF (Panel B), and IL-8 (Panel C) concentrations in supernatants of cultured lung 

fibroblasts from control subjects (n=6), smoker (n=6) and COPD patients (n=8). Box plot represents median and 

IQ range. Statistical analysis was performed by ANOVA and Fisher’s PLSD correction. 

Figure 2: COX-1, COX-2, EP1, EP2, EP3, and EP4 protein expression in cultured lung fibroblasts from control 

subjects (n=6), smoker (n=6) and COPD patients (n=8). The results were expresses in arbitrary densitometric units 

(ADU) corrected against the density of β-actin bands. Panel A: COX-1 (top panel) and COX-2 (middle panel) and 

representative gel images of COX-1 and COX-2 (bottom panel). Panel B: EP1 and EP2 (top panels), EP3 and EP4 

(middle panels) and representative gel images of EP1, EP2, EP3, and EP4 (bottom panel). Statistical analysis was 

performed by ANOVA and Fisher’s PLSD correction. 

Figure 3: COX-2, EP2, EP4 gene expression in cultured lung fibroblasts from control subjects (n=3), smoker 

(n=5) and COPD patients (n=6). Data are expressed as fold increase versus the control group that was chosen as 

the reference group (see Materials and Methods for details). Statistical analysis was performed by Kruskal-Wallis 

test and Mann-Whitney U test. 

Figure 4: PGE2 stimulates VEGF and IL-8 release in human fetal lung fibroblasts (HFL-1) in a dose-dependent 

manner. Cultured HFL-1 were stimulated with different concentrations of PGE2 (10-9 M to 10-6 Μ) for 18 hrs. At 

the end of stimulation, cell supernatants were collected for VEGF (Panel A) and IL-8 (Panel B) analysis by ELISA 

(See Methods for details). The results were expressed as mean±SD from four independent experiments. Statistical 

analysis was performed by ANOVA and Fisher’s PLSD correction. *p<0.05, **p<0.01, and ***p<0.001 vs basal;. 

Figure 5: VEGF and IL-8 production from human fetal lung fibroblasts (HFL-1) stimulated with supernatants of 

lung fibroblasts with low PGE2 level (<10-9 M, n=3), and with high PGE2 level (>10-8 M, n=3), (see Methods for 

details). Values are expressed as mean±SD Panel A: VEGF (pg/ml) (top) and IL-8 (pg/ml) (bottom) production 

after stimulation with and without supernatants of lung fibroblasts with low PGE2 level. Panel B: VEGF (pg/ml) 
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(top) and IL-8 (pg/ml) (bottom) production after stimulation with and without supernatants of lung 

fibroblasts with high PGE2 level and with supernatants depleted from PGE2. Statistical analysis was performed by 

ANOVA and Fisher’s PLSD correction. 

Figure 6: Effect of specific EP receptors agonists and antagonists on VEGF and IL-8 release from human fetal 

lung fibroblasts (HFL-1). HFL-1 cells were stimulated with the indicated agonists or with the supernatants of lung 

fibroblasts from COPD (see Methods for details). Values are expressed as mean±SD. Production of VEGF (Panel 

A) and IL-8 (Panel B) in the presence or absence of Butaprost (EP2 agonist) or Sulprostone (EP3 agonist). Panel 

C: Production of VEGF after stimulation with supernatants of lung fibroblasts from COPD in presence or absence 

of SC-19220 (EP1 antagonist) or AH-23848 (EP4 antagonist). Statistical analysis was performed by ANOVA and 

Fisher’s PLSD correction. 
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