21 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Non-linear viscous damping identification using genetic algorithms

    No full text
    (in press

    Robust design of tuned mass damper systems for seismic protection of multistory buildings

    No full text
    In this paper, a method is proposed for the robust design of tuned mass damper (TMD) systems for seismic protection of multistory buildings. The seismic excitation is a random ground motion acceleration modeled by a stationary filtered white noise process. The protected building consists of a generic multi-degree-of-freedom (MDOF) structure, represented by its modes of vibration and linear mass dampers. The design properties of the TMD system are mass, frequency and damping ratio of the TMD units, along with their location within the structure, considered as fixed at its base. Uncertainties in the properties of both the building and the input seismic excitation are explicitly accounted for in the robust design of the TMD system. In particular, the uncertain parameters considered are stiffness and damping of the structure, and frequency and damping properties of the Kanai-Tajimi model used for representing the surface ground filter of the white noise process acting at the bedrock. The response quantity chosen to be representative of the seismic demand in the building is the interstory drift ratio. Its variation to the uncertainties is treated with the direct perturbation method, by applying a mixed-order approach. Robustness in the design of the TMD properties is formulated as a multiobjective optimization problem, in which both mean and standard deviation of the building response, produced by the considered uncertain parameters, are minimized. The weighted sum method is applied for transforming the multiple objective into an aggregated scalar objective function and then solving the minimization problem. The proposed design procedure is implemented on an illustrative example, consisting of a multistory building protected with a TMD system made from two units that have to be tuned with the first- and second-mode period of the structure, respectively. Parametric analyses on protected systems characterized by different properties are carried out, and the significance of the effects produced by the variation of such properties on the optimum design of the TMD system is shown. Differences between a robust design with the proposed procedure and a more conventional one that does not account for uncertainties in the system properties are finally evaluated. © 2014 American Society of Civil Engineers
    corecore