100,316 research outputs found

    A complement to Le Cam's theorem

    Get PDF
    This paper examines asymptotic equivalence in the sense of Le Cam between density estimation experiments and the accompanying Poisson experiments. The significance of asymptotic equivalence is that all asymptotically optimal statistical procedures can be carried over from one experiment to the other. The equivalence given here is established under a weak assumption on the parameter space F\mathcal{F}. In particular, a sharp Besov smoothness condition is given on F\mathcal{F} which is sufficient for Poissonization, namely, if F\mathcal{F} is in a Besov ball Bp,qα(M)B_{p,q}^{\alpha}(M) with αp>1/2\alpha p>1/2. Examples show Poissonization is not possible whenever αp<1/2\alpha p<1/2. In addition, asymptotic equivalence of the density estimation model and the accompanying Poisson experiment is established for all compact subsets of C([0,1]m)C([0,1]^m), a condition which includes all H\"{o}lder balls with smoothness α>0\alpha>0.Comment: Published at http://dx.doi.org/10.1214/009053607000000091 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Acetylation of BMAL1 by TIP60 controls BRD4-P-TEFb recruitment to circadian promoters.

    No full text
    Many physiological processes exhibit circadian rhythms driven by cellular clocks composed of interlinked activating and repressing elements. To investigate temporal regulation in this molecular oscillator, we combined mouse genetic approaches and analyses of interactions of key circadian proteins with each other and with clock gene promoters. We show that transcriptional activators control BRD4-PTEFb recruitment to E-box-containing circadian promoters. During the activating phase of the circadian cycle, the lysine acetyltransferase TIP60 acetylates the transcriptional activator BMAL1 leading to recruitment of BRD4 and the pause release factor P-TEFb, followed by productive elongation of circadian transcripts. We propose that the control of BRD4-P-TEFb recruitment is a novel temporal checkpoint in the circadian clock cycle

    Electronic, dynamical, and thermal properties of ultra-incompressible superhard rhenium diboride: A combined first-principles and neutron scattering study

    Get PDF
    Rhenium diboride is a recently recognized ultra-incompressible superhard material. Here we report the electronic (e), phonon (p), e-p coupling and thermal properties of ReB2_2 from first-principles density-functional theory (DFT) calculations and neutron scattering measurements. Our calculated elastic constants (c11c_{11} = 641 GPa, c12c_{12} = 159 GPa, c13c_{13} = 128 GPa, c33c_{33} = 1037 GPa, and c44c_{44} = 271 GPa), bulk modulus (BB \approx 350 GPa) and hardness (HH \approx 46 GPa) are in good agreement with the reported experimental data. The calculated phonon density of states (DOS) agrees very well with our neutron vibrational spectroscopy result. Electronic and phonon analysis indicates that the strong covalent B-B and Re-B bonding is the main reason for the super incompressibility and hardness of ReB2_2. The thermal expansion coefficients, calculated within the quasi-harmonic approximation and measured by neutron powder diffraction, are found to be nearly isotropic in aa and cc directions and only slightly larger than that of diamond in terms of magnitude. The excellent agreement found between calculations and experimental measurements indicate that first-principles calculations capture the main interactions in this class of superhard materials, and thus can be used to search, predict, and design new materials with desired properties.Comment: submitted to pr

    Ground-state configuration space heterogeneity of random finite-connectivity spin glasses and random constraint satisfaction problems

    Full text link
    We demonstrate through two case studies, one on the p-spin interaction model and the other on the random K-satisfiability problem, that a heterogeneity transition occurs to the ground-state configuration space of a random finite-connectivity spin glass system at certain critical value of the constraint density. At the transition point, exponentially many configuration communities emerge from the ground-state configuration space, making the entropy density s(q) of configuration-pairs a non-concave function of configuration-pair overlap q. Each configuration community is a collection of relatively similar configurations and it forms a stable thermodynamic phase in the presence of a suitable external field. We calculate s(q) by the replica-symmetric and the first-step replica-symmetry-broken cavity methods, and show by simulations that the configuration space heterogeneity leads to dynamical heterogeneity of particle diffusion processes because of the entropic trapping effect of configuration communities. This work clarifies the fine structure of the ground-state configuration space of random spin glass models, it also sheds light on the glassy behavior of hard-sphere colloidal systems at relatively high particle volume fraction.Comment: 26 pages, 9 figures, submitted to Journal of Statistical Mechanic

    The upper-atmosphere extension of the ICON general circulation model (version: Ua-icon-1.0)

    Get PDF
    How the upper-atmosphere branch of the circulation contributes to and interacts with the circulation of the middle and lower atmosphere is a research area with many open questions. Inertia-gravity waves, for instance, have moved in the focus of research as they are suspected to be key features in driving and shaping the circulation. Numerical atmospheric models are an important pillar for this research. We use the ICOsahedral Non-hydrostatic (ICON) general circulation model, which is a joint development of the Max Planck Institute for Meteorology (MPI-M) and the German Weather Service (DWD), and provides, e.g., local mass conservation, a flexible grid nesting option, and a non-hydrostatic dynamical core formulated on an icosahedral-triangular grid. We extended ICON to the upper atmosphere and present here the two main components of this new configuration named UA-ICON: an extension of the dynamical core from shallow- to deep-atmosphere dynamics and the implementation of an upper-atmosphere physics package. A series of idealized test cases and climatological simulations is performed in order to evaluate the upper-atmosphere extension of ICON. © Author(s) 2019

    Casimir pistons with hybrid boundary conditions

    Full text link
    The Casimir effect giving rise to an attractive or repulsive force between the configuration boundaries that confine the massless scalar field is reexamined for one to three-dimensional pistons in this paper. Especially, we consider Casimir pistons with hybrid boundary conditions, where the boundary condition on the piston is Neumann and those on other surfaces are Dirichlet. We show that the Casimir force on the piston is always repulsive, in contrast with the same problem where the boundary conditions are Dirichlet on all surfaces.Comment: 8 pages, 4 figures,references added, minor typos correcte

    An effective ant-colony based routing algorithm for mobile ad-hoc network

    Get PDF
    An effective Ant-Colony based routing algorithm for mobile ad-hoc network is proposed in this paper. In this routing scheme, each path is marked by path grade, which is calculated from the combination of multiple constrained QoS parameters such as the time delay, packet loss rate and bandwidth, etc. packet routing is decided by the path grade and the queue buffer length of the node. The advantage of this scheme is that it can effectively improve the packet delivery ratio and reduce the end-to-end delay. The simulation results show that our proposed algorithm can improve the packet delivery ratio by 9%-22% and the end-to-end delay can be reduced by 14%-16% as compared with the conventional QAODV and ARA routing schemes
    corecore