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A Complement to Le Cam’s Theorem

Abstract
This paper examines asymptotic equivalence in the sense of Le Cam between density estimation experiments
and the accompanying Poisson experiments. The significance of asymptotic equivalence is that all
asymptotically optimal statistical procedures can be carried over from one experiment to the other. The
equivalence given here is established under a weak assumption on the parameter space ℱ. In particular, a sharp
Besov smoothness condition is given on ℱ which is sufficient for Poissonization, namely, if ℱ is in a Besov ball
Bαp,q(M) with αp > 1/2. Examples show Poissonization is not possible whenever αp < 1/2. In addition,
asymptotic equivalence of the density estimation model and the accompanying Poisson experiment is
established for all compact subsets of C([0,1]m), a condition which includes all Hölder balls with smoothness
α > 0.
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A COMPLEMENT TO LE CAM’S THEOREM

BY MARK G. LOW1 AND HARRISON H. ZHOU

University of Pennsylvania and Yale University

This paper examines asymptotic equivalence in the sense of Le Cam be-
tween density estimation experiments and the accompanying Poisson exper-
iments. The significance of asymptotic equivalence is that all asymptotically
optimal statistical procedures can be carried over from one experiment to the
other. The equivalence given here is established under a weak assumption on
the parameter space F . In particular, a sharp Besov smoothness condition is
given on F which is sufficient for Poissonization, namely, if F is in a Besov
ball Bα

p,q(M) with αp > 1/2. Examples show Poissonization is not possible
whenever αp < 1/2. In addition, asymptotic equivalence of the density es-
timation model and the accompanying Poisson experiment is established for
all compact subsets of C([0,1]m), a condition which includes all Hölder balls
with smoothness α > 0.

1. Introduction. A family of probability measures E = {Pθ : θ ∈ �} defined
on the same σ -field is called a statistical model. Le Cam [8] defined a distance
�(E,F,�) between E and another model F = {Qθ : θ ∈ �} with the same pa-
rameter set �. For bounded loss functions, if �(E,F,�) is small, then to every
statistical procedure for E there is a corresponding procedure for F with almost
the same risk function.

Le Cam [9] used the deficiency distance between the experiment En with n i.i.d.
observations and the experiment En+r with n + r i.i.d. observations as a measure
of the amount of information in the additional observations. It was shown that the
deficiency distance �(En,En+r ,F ) can be bounded by

�(En,En+r ,F ) ≤
√

8rβn,(1)

where βn is the minimax risk for estimating a density function under squared
Hellinger distance based on the experiment En. For any two measures P and Q

the Hellinger distance H(P,Q) is defined by H 2(P,Q) = ∫
(
√

dP − √
dQ)2.

For regular parametric models βn is of order n−1 and Le Cam’s upper bound for
�(En,En+r ,F ) is then C(r/n)1/2 for some C > 0. This bound was furthered im-
proved in Mammen [11] to Cr/n once again for the case of regular parametric
models.
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A COMPLEMENT TO LE CAM’S THEOREM 1147

As pointed out by Le Cam [9] the information content in additional observations
is connected to the “technical device which consists in replacing the fixed sample
size n by a Poisson variable N .” More specifically throughout this paper we shall
consider the following two experiments.

Density estimation experiment.

En :y1, y2, . . . , yn i.i.d. with density f.(2)

Poisson experiment.

Fn :x n(·), a Poisson process with intensity measure nf.(3)

Equivalently, the Poisson experiment corresponds to observing a Poisson ran-
dom variable N with expectation n and then independently of N observing
y1, y2, . . . , yN i.i.d. with density f . For both experiments f is an unknown den-
sity and f ∈ F a given parameter space and we shall say that Poissonization is
possible if �(En,Fn,F ) → 0. Le Cam [9] showed �(En,Fn,F ) ≤ Cn−1/4 for
regular parametric models and he also gave the following general result.

PROPOSITION 1 (Le Cam). Suppose that there is a sequence of estimators f̂n

based on either the density estimation model En or the Poisson process model Fn

satisfying

sup
f ∈F

Ef n1/2H 2(f̂n, f ) → 0.(4)

Then

�(En,Fn,F ) → 0.

It should be noted that the condition (4) is quite a strong assumption. However
for Hölder spaces defined on the unit interval with α > 1/2, Yang and Barron [15]
showed that there is an estimator for which β∗

n = o(1/
√

n) and in this case it fol-
lows from Proposition 1 that �(En,Fn,F ) → 0. We should also note that Pois-
sonization is not always possible. Le Cam [9] does give an example of a parameter
space for which �(En,Fn,F ) � 0. However the parameter space used for this
counterexample is so “large” that there does not even exist a uniformly Hellinger
consistent estimator over this parameter space. There is thus a considerable gap in
the condition given in Proposition 1 which guarantees that Poissonization is pos-
sible and this example for which Poissonization fails. The present paper aims to at
least partially fill this gap.

In the last decade much progress has been made in bounding the deficiency
distance between nonparametric models and Gaussian white noise models. In par-
ticular, theory has been developed for nonparametric density estimation models
in Nussbaum [13], nonparametric regression in Brown and Low [2], generalized
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linear models in Grama and Nussbaum [5], for nonparametric autoregression in
Milstein and Nussbaum [12] and for spectral density models in Golubev, Nuss-
baum and Zhou [4]. In all of this work asymptotic equivalence is established under
particular smoothness assumptions on a nonparametric model which in terms of
a Hölder smoothness condition for functions defined on [0,1] corresponds to an
assumption of at least α > 1/2. As noted earlier the condition α > 1/2 is exactly
the minimal Hölder smoothness for which the assumption in Proposition 1 holds.
Moreover, for the cases of nonparametric regression and nonparametric density es-
timation these models have been shown to be not equivalent to the corresponding
white noise with drift model when α < 1/2. See Brown and Low [2] and Brown
and Zhang [3]. A corresponding theory has not yet been developed which explains
when Poissonization is possible for such nonparametric models.

The focus of the present paper is to develop such a theory. We start, in Section 2,
by giving some further examples where Poissonization is not possible. These ex-
amples are interesting because the parameter spaces used in these examples are
much smaller than the one given in Le Cam [9]. In particular, the minimax rates
of convergence under squared Hellinger distance can be of order n−γ with γ ar-
bitrarily close to 1/2. Thus in terms of Hellinger distance the sufficient condi-
tion given in Proposition 1 cannot be improved. However, examples of parameter
spaces are also given for which the minimax Hellinger distance converges to zero
at a rate n−γ with γ arbitrarily close to zero but where Poissonization holds. Taken
together these results show that Hellinger distance cannot fully explain when Pois-
sonization is possible.

The focus of Section 3 is on developing an alternative sufficient condition which
guarantees that Poissonization is possible. A sequence of loss functions is intro-
duced which are bounded between a chi-square distance and a squared Hellinger
distance. It is shown that if there exists a sequence of uniformly consistent esti-
mators under this sequence of loss functions then Poissonization is possible and
�(En,En+D

√
n,F ) → 0 for every D > 0 (see Theorem 2). In particular, in con-

trast to the theory for Gaussian equivalence Poissonization is possible over all
Hölder balls with α > 0.

The theory also allows for a characterization of the Besov spaces for which
Poissonization is possible. Under the sequence of losses defined in Section 3, a uni-
formly consistent sequence of estimators is constructed for Besov spaces with pa-
rameters αp > 1/2, demonstrating that in these cases Poissonization is possible.
On the other hand, the examples given in Section 2 show that Poissonization is not
possible for Besov spaces with αp < 1/2.

2. Examples where Poissonization is not possible. As mentioned in the in-
troduction Le Cam [9] gave an example of a parameter set and a statistical prob-
lem which showed that the deficiency distance between i.i.d. observations and the
Poissonized version of this experiment does not go to zero. In this example the
observations have support on the unit interval but the parameter space, say F , is
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not precompact in Hellinger distance. In fact, in his example uniformly consistent
estimators under Hellinger distance do not even exist. Every sequence of estima-
tors f̂n satisfies

lim inf
n→∞ sup

f ∈F
EH 2(f̂n, f ) > 0.

This is the only example in the literature that we are aware of for which
�(En,Fn,F ) � 0.

In this section it is shown that there are “much smaller” parameter spaces for
which Poissonization is not possible. In each of these examples the parameter
space is “much smaller” than that given by Le Cam and in particular is compact
under Hellinger distance. Moreover, for every r < 1

2 an example is given of a pa-
rameter space F for which the minimax risk satisfies

inf
f̂n

sup
f ∈F

EnrH 2(f̂n, f ) → 0(5)

but where Poissonization is not possible.

2.1. Besov spaces. The counterexamples we provide in this section are given
for Besov spaces. These spaces occupy a central role in much of the recent
nonparametric function estimation literature. Besov spaces also arise naturally
in equivalence theory. In Brown, Carter, Low and Zhang [1] they were used to
characterize when the density estimation model is asymptotically equivalent to a
Gaussian process model.

Let Jj,k be the averaging operator

Jj,k(f ) = k

∫ j/k

(j−1)/k
f (x) dx

and define the piecewise constant approximation f̄(k) by

f̄(k) =
k∑

j=1

Jj,k(f )1[(j−1)/k,j/k).(6)

Then for each function f on [0,1] the Besov norm is given by

‖f ‖α,p,q =
{∣∣∣∣∫ f (x) dx

∣∣∣∣q +
∞∑
i=0

(
2iα

∥∥f̄(2i+1) − f̄(2i )

∥∥
p

)q}1/q

,(7)

and the Besov balls can then be defined by

Bα
p,q(M) = {‖f ‖α,p,q ≤ M}.

Under squared Hellinger distance rate optimal estimators have been constructed
in Yang and Barron [15]. It was shown that

C1(n logn)−2α/(2α+1) ≤ inf
f̂

sup
f ∈F

EH 2(f̂ , f )

(8)
≤ C2n

−2α/(2α+1)(logn)1/(2α+1),
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when α + 1/2 − 1/p > 0, p ≥ 1 and q ≥ 1. We should note that it immediately
follows from the sufficient condition of Le Cam that �(En,Fn,F ) → 0 when
the parameter space F = Bα

p,q(M) and α > 1
2 . In the counterexamples that fol-

low αp < 1/2. In Section 4 it is shown that Poissonization is possible whenever
αp > 1/2.

2.2. Counterexamples. In order to show that �(En,Fn,F ) � 0 it suffices to
exhibit a sequence of statistical problems with bounded loss functions such that the
Bayes risks are asymptotically different. This approach taken by Le Cam [9] and
Brown and Zhang [3] requires the specification of a sequence of decision problems
along with a particular sequence of priors for which the Bayes risks are asymptot-
ically different.

We adopt the same general strategy. First we shall provide a description of the
sequence of priors and then we shall turn to the particular decision problems. The
priors we shall use correspond to uniform priors placed on only a finite number
of functions in F . For this reason it is convenient to specify these priors by first
describing the set of points on which the priors are supported. For n ≥ 1, let In be
the collection of intervals [ i−1

n
, i

n
), i = 1,2, . . . , n. Now for 1/2 < β < 1 define

Fβ,n =
{
f : [0,1] → R :f = 0 on nβ intervals in In and f = n

n − nβ
otherwise

}
.

It is simple to check by computing the Besov norms that for any M > 1, Fβ,n ⊂
Bα

p,q(M) for n sufficiently large, whenever αp < 1 − β . The priors that we shall
use correspond to uniform priors on these sets where the β is chosen so that
αp < 1 − β .

We now turn to a description of a collection of decision problems. For a given
known m which may depend on n, using either i.i.d. data or the Poissonized data,
we wish to name exactly m intervals of length 1/n where the function is not zero.
More specifically, we must list m intervals of the form [(i − 1)/n, i/n), where
the integer i satisfies 1 ≤ i ≤ n. For this problem we impose the following loss
function. If we name m such intervals correctly then the loss is zero. If we even
make one mistake the loss is 1. The difficulty of this problem depends strongly on
the magnitude of m as well as on the value of β . For example, if m is small then
just random guessing of such intervals usually results in zero loss since the function
takes on a nonzero value on most of the intervals. The problem becomes difficult
when m is large. This idea can be developed further as follows. Let KE and KF

be equal to the number of intervals containing at least one observation based on
the density estimation model and Poisson process model, respectively. Then it is
easy to calculate the expectations and variances of these random variables. Taylor
series expansions yield

E(KE) = n(1 − e−1) + nβ(−1 + 2e−1) + O

(
n2β

n

)
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and

E(KF ) = n(1 − e−1) + nβ(−1 + 2e−1) + O

(
n2β

n

)
.

Likewise the variances satisfy

Var(KE) = n
(
e−1 + o(1)

)
,

Var(KF ) = n
(
(1 − e−1)e−1 + o(1)

)
.

Our counterexamples are constructed by choosing a value of m where the vari-
ability of KE and KF plays an important role in the difficulty of the prob-
lem. That is, we shall take m to be equal to the expected value of KE mi-
nus a small multiple of the standard deviation of KE or KF . Specifically, set
m = n(1 − e−1) + nβ(−1 + 2e−1) − √

n. For such an m the chance that KE < m

differs significantly from the chance that KF < m.
It is convenient to recast the problem in the following way. Note that once we

have decided on a set of m intervals where the function is not equal to zero we can
take the subset of Fβ,n which contains all such functions with this property. Call
this set of functions S. The loss associated to S is then

L(f,S) =
{

0, f ∈ S,
1, otherwise.

Recast in this manner the problem is thus to select S, a subset of Fβ,n, each
satisfying f = n/(n − nβ) on those m intervals. That is, the set S is equal to the
collection of functions in Fβ,n which take on the value f = n/(n − nβ) on the m

intervals.
As mentioned at the beginning of this section, in order to show that the i.i.d. ob-

servations and the Poissonized version are asymptotically nonequivalent we shall
show that the Bayes risks for these two problems are different when we put a uni-
form prior on Fβ,n. A Bayes solution to each of these problems is straightforward.
In En when KE ≥ m or in Fn when KF ≥ m the selection of S is easy. In these
cases we know m intervals where the function is equal to f = n/(n − nβ) and we
can just take S to be a set of functions in Fβ,n with this property. The loss suffered
in this case is clearly 0. If KE < m or KF < m we need to choose an additional
m − KE or m − KF intervals in order to construct S. A Bayes rule for doing this
is to select m − KE or m − KF additional intervals randomly from the remaining
n − KE or n − KF intervals based on the uniform prior over these intervals. Writ-
ing K for either KE or KF we see that the expected loss for these problems given
the value of K when K < m is just 1 minus the chance that, when picking m − K

balls out of an urn with n − nβ − K black balls and a total of n − K balls, each
ball chosen is black. The chance that this occurs is just

1 −
(

n − nβ − K

m − K

)/(
n − K

m − K

)
.
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Hence the Bayes risk for these problems can be written as

Rn = E

[
1 −

(
n − nβ − K

m − K

)/(
n − K

m − K

)]
I{K<m},

where K is either KE or KF .
In the Appendix we prove the following lemma.

LEMMA 1. With Rn defined above in both the density estimation setting En

and the Poisson process setting Fn,

Rn = P(K < m) + o(1),(9)

where K = KE for En, or KF for Fn.

It is then easy to see that the value of Rn is asymptotically different for En

and Fn. For En note that the central limit theorem (CLT) for the occupancy prob-
lem (see Kolchin, Sevast’yanov and Chistyakov [7]) shows that

P(KE < m) → �
(−√

e
)
,

and the usual CLT yields

P(KF < M) → �
(−√

e/
√

1 − 1/e
)
,

where � is the cumulative distribution function of the standard normal distribution.
Hence the Bayes risks for this problem differ asymptotically.

Now consider the Besov space Bα
p,q(M) with M > 1 and αp < 1/2. Then take

1/2 < β < 1 − αp. It then follows that for sufficiently large n, Fβ,n ⊂ Bα
p,q(M).

Since, as we have just shown, there is a sequence of priors on Fβ,n which have dif-
ferent asymptotic Bayes risks for i.i.d. data and Poisson data, the same is trivially
true for Bα

p,q(M). This in turn shows that the deficiency distance does not tend
to zero. The consequence of these results for asymptotic equivalence can then be
summarized in the following theorem.

THEOREM 1. Suppose αp < 1
2 and M > 1. Then

�(En,Fn,B
α
p,q(M)) � 0.

REMARK 1. Note that choosing p = 1 and some α < 1/2, the results of Yang
and Barron [15] given in (8) show that for any algebraic rate of convergence slower
than n−1/2 there are Besov parameter spaces with at least this rate of convergence,
under squared Hellinger distance, where Poissonization is not possible.
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3. Asymptotic equivalence under a general assumption. In the previous
section examples were presented where the rate of convergence under squared
Hellinger distance is arbitrarily close to 1/2 but where Poissonization is not pos-
sible. It follows that any weakening of Le Cam’s assumptions for Poissonization
must involve something other than Hellinger distance.

In this section it is shown that Poissonization is possible under a condition which
substantially improves on the sufficient condition given in Le Cam [9]. In par-
ticular, for all Hölder balls on the unit interval with arbitrary smoothness α > 0
Poissonization is possible although the sufficient condition of Le Cam given in
Proposition 1 shows Poissonization is possible only if α > 1/2.

Considerable insight into a comparison of the two experiments En and Fn can
be gained by the following simple observation which also greatly simplifies the
analysis. Consider two Poisson experiments, Fn−m and Fn+m where m = cnγ . If
γ > 1

2 , then with probability approaching one the number of observations from
Fn−m is less than n whereas the number of observations from Fn+m is larger
than n. It is then easy to check that asymptotically En is at least as informative
as Fn−m and Fn+m is at least as informative as En. In fact, by taking γ = 1

2 and c

sufficiently large simple bounds based on the chance that there are more or less
than n observations lead to bounds on how much more or less informative these
experiments can be. The following lemma captures these ideas. The proof can be
found in the Appendix.

LEMMA 2. Suppose that for each D > 0

lim
n→∞�(Fn,Fn+D

√
n,F ) = 0.

Then

lim
n→0

�(En,Fn,F ) → 0.

Thus in order to show that �(En,Fn,F ) → 0 we can focus on measuring the
deficiency distance between two Poisson process experiments. It should be noted
that some insight into the deficiency distance between two Poisson experiments is
provided by the following general bound given in Le Cam [10]:

�(Fn,Fn+m,F ) ≤ m√
2n

;
but clearly this bound does not suffice in the present context.

It is useful to recall the Hellinger distance between any two Poisson processes
with intensity g and h. Write Pf for the distribution of a Poisson process with
intensity f . Then it follows from Le Cam ([10], page 160) that

H 2(Pg,Ph) = 2
(

1 − exp
(
−1

2

∫ (√
g − √

h
)2

))
≤

∫ (√
g − √

h
)2

.
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In particular, the following upper bound holds for the Hellinger distance between
Poisson processes with intensities nf and (n + m)f :

H 2(
Pnf ,P(n+m)f

) ≤
∫ (√

nf −
√

(n + m)f
)2 = (√

n − √
n + m

)2 
 m2

n
.

For this reason, to show �(Fn,Fn+m,F ) → 0 a randomization of the Poisson
process with intensity nf must be given which more closely matches that of the
Poisson process with intensity (n + m)f . If we know that f is in a neighborhood
of a particular f0 ∈ F , this is easily accomplished by a superposition of the Pois-
son processes with intensities nf and mf0. For this new Poisson process we can
calculate the Hellinger distance to yield

H 2(
Pnf +mf0,P(n+m)f

) ≤ m2

n + m

∫
(f − f0)

2

f + mf0/(n + m)
.

In particular, if m = D
√

n with D > 1 it immediately follows that

H 2(
Pnf +mf0,P(n+m)f

) ≤ 2D2
∫

(f − f0)
2

f + n−1/2f0
.

The following result immediately follows.

LEMMA 3. Set

F (f0, cn) =
{
f :

∫
(f − f0)

2

f + n−1/2f0
≤ cn

}
.(10)

Then

�
(
Fn,Fn+D

√
n,F (f0, cn)

) ≤ 2D
√

cn.

This lemma yields a general approach to giving a sufficient condition under
which Poissonization is possible. Le Cam showed that in order to establish as-
ymptotic equivalence for the whole parameter space it suffices to establish local
asymptotic equivalence, as in Lemma 3, along with the existence of estimators
which with probability tending to 1 localize you within such a neighborhood. In
the present context it is natural to link the local parameter space around a given f0
with the following loss function which also depends on n.

Let the loss Ln be defined by

Ln(f, g) =
∫

(g − f )2

f + n−1/2g
dµ.

The following theorem, the proof of which is given in the Appendix, then gives a
sufficient condition for Poissonization. This step is often called globalization.
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THEOREM 2. Let F be a parameter space that is separable under squared
Hellinger distance. Fix ε > 0 and let f̂n,ε be an estimator based on the model En.
Suppose that f̂n,ε satisfies

sup
f ∈F

Pf {Ln(f, f̂n,ε) > ε} → 0.(11)

Then

�(En,Fn,F ) → 0.

In addition, we have �(En,En+D
√

n,F ) → 0 for every D > 0.

Of course this theorem would not be particularly useful unless we were able
to give some interesting examples under which (11) holds. However, before giv-
ing such examples it is worthwhile to note that although the loss function Ln is
not standard, it can be connected with squared Hellinger distance by using the
inequalities

1 ≤ (
√

g + √
f )2

f + n−1/2g
≤ (

1 + √
n
)
.(12)

It then follows that

H 2(f, g) ≤ Ln(f, g) =
∫ (√

g − √
f

)2 (
√

g + √
f )2

f + n−1/2g
dµ ≤ (

1 + √
n
)
H 2(f, g).

It thus immediately follows that any sequence of estimators which satisfies (4) also
satisfies (11). Hence convergence under Ln is weaker than Le Cam’s condition.

REMARK 2. Let F be a compact subset of C([0,1]m) where C([0,1]m) is the
collection of all continuous functions on the unit hypercube in Rm with the L∞
norm as the measure of distance between functions. Standard arguments such as
those found in Woodroofe [14] show that there exist estimators f̂n such that for
every ε > 0

sup
f ∈F

P(‖f̂n − f ‖∞ ≥ ε) → 0.

Define f̃n = f̂n1(f̂n ≥ 2ε). On the event An = {‖f̂n − f ‖∞ < ε}, we have f (x) ≤
f̂n(x)+|f̂n(x)−f (x)| ≤ 3ε when f̃n = 0 and f (x) ≥ f̂n(x)−|f̂n(x)−f (x)| ≥ ε

when f̃n ≥ 2ε. It then follows that when An occurs

Ln(f, f̃n) ≤
∫
{f̂n<2ε}

f +
∫
{f̂n≥2ε}

(f̂n − f )2

f

≤ 3ε + ε2

ε
= 4ε.
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Thus as n → ∞
sup
f ∈F

P {Ln(f, f̃n) > 4ε} ≤ sup
f ∈F

P(Ac
n) → 0.

It thus follows that Poissonization is possible in such cases. In particular, an exam-
ple of compact subsets of C([0,1]m) is the set of Hölder balls F = {f : |f (y) −
f (x)| ≤ M‖x − y‖α} where ‖ · ‖ is the usual Euclidean norm on Rm.

REMARK 3. Suppose F is a compact subset of the space of functions on

 ⊂ Rm under L2 distance and that there is a c > 0 such that f (x) ≥ c for all
x ∈ 
 and all f ∈ F . Under this assumption, for any ε > 0 there is an estimator
such that

lim
n→∞ sup

f

Pf (‖f̂n − f ‖2
2 > ε) = 0.

Note that

Ln(f, g) ≤
∫

(g − f )2

f
≤ 1

c
‖f − g‖2

2

for any g and f in F .
Thus for every ε > 0 we have

sup
f ∈F

Pf {Ln(f, f̂n) > ε} ≤ sup
f ∈F

Pf (‖f̂n − f ‖2
2 > cε) → 0.

It follows that Poissonization is possible in such cases. In particular, any subset
of Besov balls on the unit interval with α + 1/2 − 1/p > 0 which have functions
uniformly bounded away from 0 and above satisfies such a condition.

4. Asymptotic equivalence for the unit interval. In the previous section it
was shown that the existence of consistent estimators under the loss function Ln is
sufficient for Poissonization and some examples of parameter spaces were given
where such consistent estimators exist. In this section attention is focused on func-
tions defined on the unit interval. Sufficient conditions on the parameter space F
are given which guarantee the existence of uniformly consistent estimators un-
der Ln, which in turn guarantees that Poissonization is possible.

Since the loss Ln imposes a large penalty when the underlying function is close
to zero but the estimator is not, it is natural to construct procedures which take
on the value zero whenever it is suspected that the true function is close to zero.
At the same time consistency under Ln also requires the procedure to be close to
the unknown function over most of the unit interval. This motivates the following
simple modification of a histogram estimator for functions defined on the unit
interval. We focus on the Poisson model. First consider the histogram estimator

f̂ n(x) = k

n
Nj , x ∈ [(j − 1)/k, j/k), j = 1,2, . . . , k,(13)
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where k = [n/ log4 n] and where Nj is the number of observations on the interval

[(j − 1)/k, j/k). Note that f̂ n(x) defines a histogram on a very fine grid and that

f̂ n(x) is an unbiased estimator of f̄(k). The following modification of f̂ n(x) leads
to a sequence of estimators which is often consistent under Ln.

Set cn = 1/
√

logn and let f̂n be defined by

f̂n(x) =


0, f̂ n(x) < 2cn,

1/cn, f̂ n(x) > 1/cn,

f̂ n(x), otherwise.

(14)

The following theorem gives a structural condition on the parameter space F
which guarantees that f̂n is consistent under Ln.

THEOREM 3. Let F be a collection of densities on the unit interval such that
for some fixed C > 0,

∫
f 2 ≤ C. Moreover suppose that

sup
f ∈F

µ
{
x :

∣∣f (x) − f̄ (x)(k)

∣∣ > 1/
√

log k
} = O(k−δ),

(15)
for some δ > 1/2.

Then for the Poisson model (3), the estimator f̂n satisfies

sup
f ∈F

Ef Ln(f, f̂n) = o(1)(16)

and hence

�(En,Fn,F ) → 0.(17)

In particular (16) holds for Besov spaces Bα
p,q(M) whenever αp > 1/2, p ≥ 1 and

q ≥ 1.

APPENDIX

A.1. Review of deficiency distance. For any two experiments E and F with a
common parameter space F the deficiency distance �(E,F,F ) is defined by

�(E,F,F ) = max(δ(E,F,F ), δ(F,E,F )),

where

δ(E,F,F ) = inf
K

sup
f ∈F

‖KPf − Qf ‖TV,

where K is a transition which is usually given by a Markov kernel. The triangle
inequality

δ(E,G,F ) ≤ δ(E,F,F ) + δ(F,G,F )(18)
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is used below in the proof of Lemma 2. Bounds between Hellinger distance and
total variation immediately yield the following bound for the deficiency distance
between the experiments E = {Pf ,f ∈ F } and F = {Qf ,f ∈ F }:

�(E,F,F ) ≤ 2 inf
K

sup
f ∈F

H 2(KPf ,Qf ).

A.2. Proof of Lemma 1. A proof is given only for the Poisson process model,
as the proof for the density estimation model is similar. We have

Rn = E

(
1 − n − nβ − KF

n − KF

· · · · · n − nβ − KF − (m − KF − 1)

n − KF − (m − KF − 1)

)
I{KF <m}.

The general central limit theorem yields
KF − EKF√

Var(KF )
� N(0,1).

For any 0 < ε there are constants k1 and k2 such that

P
(
KF < m − k2

√
n
) + P

(
m − k1

√
n < KF < m

) ≤ ε

for sufficiently large n. Simple calculation shows

n − nβ − K

n − K
· · · · · n − nβ − K − (m − K − 1)

n − K − (m − K − 1)
→ 0

for β > 1/2, and m − k2
√

n ≤ K ≤ m − k1
√

n. Thus Rn = P(KF < m) + o(1).

A.3. Proof of Lemma 2. We want to show �(En,Fn,F ) → 0. We only show
here that δ(Fn,En) → 0 as the other direction, namely, δ(En,Fn) → 0, is similar.

By the triangle inequality for deficiency we have

δ(Fn,En) ≤ δ(Fn,Fn+D
√

n) + δ(Fn+D
√

n,En).

From the assumption of Lemma 2 we know that the first term on the right-hand side
goes to zero and hence it suffices to show that limD→∞ δ(Fn+D

√
n,En) → 0. Now

let νn be a Poisson(n + m) variable with m = D
√

n and define ν+
n = max(n, νn).

Let F #
n+m be the experiment obtained by observing x1, x2, . . . , xν+

n
i.i.d. with den-

sity f . Clearly En � F #
n+m (where � means “less informative” for experiments).

We have

�(F #
n+m,Fn+m,F ) ≤ ‖(L(ν+

n ),L(νn))‖TV = P(ν+
n ≤ n − 1).

The Markov inequality gives

P(ν+
n ≤ n − 1) ≤ Var(ν+

n )

m2 = (n + m)

m2 ≤ 2n

m2 .

This implies, since m = D
√

n, that

δ(Fn+D
√

n,En) ≤ 2

D2

and Lemma 2 follows on letting D → ∞.



A COMPLEMENT TO LE CAM’S THEOREM 1159

A.4. Proof of Theorem 2. As mentioned earlier, Theorem 2 is termed a glob-
alization step in the asymptotic equivalence literature. The approach given here
follows that of Nussbaum [13] and is by now somewhat standard. For simplicity
of the notation we assume that n is even. There are two steps.

Step 1. Split the observations {y1, y2, . . . , yn} of En into two sets of the same
size, {

y
1,n/2

=
(
y1i; i = 1, . . . ,

n

2

)
, y

2,n/2
=

(
y2i; i = 1, . . . ,

n

2

)}
.

Then define a new experiment F #
n with the following independent observations:{

y
1,n/2

,

{
x2,n/2(·) with intensity

n

2
f

}}
,

which is a modification of En with the second set of observations in En replaced
by a set of observations from Fn. For ease of reading write y

1
, y

2
and x2 to re-

place y
1,n/2

, y
2,n/2

and x2,n/2. Let F0 = F (f0, cn) defined in (10). For any ε > 0,
Lemma 3 tells us that the second set of observations in En is locally asymptoti-
cally equivalent to a set of observations from Fn uniformly in f0 ∈ F , that is, for
all f0 ∈ F there is a transition Kf0 such that

sup
f0∈F

sup
f ∈F0

|Kf0P2,f − Q2,f | ≤ ε

when n is sufficiently large, and from Proposition 9.2 in Nussbaum [13] every
transition Kf0 is given by a Markov kernel. With the first set of observations, we
will construct an estimator f̂n for f that satisfies the optimality criterion given
in (11). Because the parameter space is separable in Hellinger distance, and for
fixed n Hellinger distance is equivalent to the loss function Ln by equation (12),
we may further assume that f̂n ∈ F0 with F0 countable. Then one can show that
En and F #

n are asymptotically equivalent. For any measurable set B of experiment
F #

n , define a randomization procedure

M(y
1
, y

2
,B) =

∫
1B((y

1
;x2))Kf̂n(y

1
)
(y

2
, dx2).

To show that M is a Markov kernel, it is enough to check the measurability of
K

f̂n(y
1
)
(y

2
,B2) in (y

1
, y

2
), for any given measurable set B2. It is easy to see the

measurability follows from the condition that f̂n ∈ Fn
0 with Fn

0 countable. Then

MPf (B) =
∫ ∫

1B((y
1
;x2))

(
K

f̂n(y
1
)
P2,f

)
(dx2)P1,f (dy

1
),

which is expected to be close to

Q#
f (B) =

∫ ∫
1B((y

1
;x2))Q2,f (dx2)P1,f (dy

1
).
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Let A1 = {y
1
,Ln(f, f̂n,ε) ≤ ε} and supf P (Ac

1) ≤ ε. Then

|M · Pf (B) − Q#
f (B)|

=
∣∣∣∣∫ ∫

1B((y
1
;x2))

[(
K

f̂n(y
1
)
P2,f

) − Q2,f

]
(dx2)P1,f (dy

1
)

∣∣∣∣
=

∣∣∣∣∫ [1Ac
1
(y

1
) + 1A1(y1

)]

×
∫

1B((y
1
;x2))

[(
K

f̂n(y
1
)
P2,f

) − Q2,f

]
(dx2)P1,f (dy

1
)

∣∣∣∣
≤ 2P1,f (Ac

1) + sup
f0∈F

sup
f ∈F (f0)

|Kf0P2,f − Q2,f | ≤ 3ε

uniformly over all f ∈ F . Thus δ(En,F
#
n ) ≤ 3ε. Similarly, we can show

δ(F #
n ,En) ≤ 3ε. That is to say, �(En,F

#
n ,F ) → 0.

Step 2. We will then apply this procedure again to F #
n in order to replace the

first set of observations by its “asymptotically equivalent set,” and obtain the com-
pound experiment F ##

n where one observes two independent Poisson processes
with intensity n

2f ,

{x1,n(·), x2,n(·)}.
Here we need an estimator in F0 for f which is derived from the second part
of the observations in F #

n and which has to satisfy the same optimality criterion.
Similarly we have �(F #

n ,F ##
n ,F ) → 0.

By applying a sufficiency argument, we see F ##
n is equivalent to Fn, so

�(En,Fn,F ) → 0.

Similarly we can show �(Fn,Fn+D
√

n,F ) → 0 using Lemma 3. Then the tri-
angle inequality (18) for the deficiency distance gives

�(En,En+D
√

n,F ) ≤ �(En,Fn,F ) + �(Fn,Fn+D
√

n,F )

+ �(Fn+D
√

n,En+D
√

n,F ) → 0.

A.5. Proof of Theorem 3. The following simple lemma is used in the proof
of Theorem 3.

LEMMA 4. Let N ∼ Poisson(λ). Then

P{|N − λ| ≥ m0} ≤ exp
(−m3

0/(m0 + λ)2)
.

PROOF. The Chebyshev inequality gives

P{N − λ ≥ m0} ≤ E exp(t (N − λ))

exp(tm0)

= exp
(
λ(et − 1 − t) − tm0

)
for all t ≥ 0.
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Let t = m0/(m0 + λ). We know et − 1 − t ≤ t2 for 0 ≤ t ≤ 1. Then

P{N − λ ≥ m0} ≤ exp
(
λm2

0/(m0 + λ)2 − m2
0/(m0 + λ)

)
= exp

(−m3
0/(m0 + λ)2)

.

Similarly we have P{N − λ ≤ −m0} ≤ exp(−m3
0/(m0 + λ)2). �

PROOF OF THEOREM 3. For f̄(k) defined in (6) and cn = 1√
logn

set

Bn = {
x :

∣∣f̄(k)(x)
∣∣ ≤ 1/cn, x ∈ [0,1]}

and define An by

An =
{
xn : sup

x∈Bn

∣∣f̄(k) − f̂ n

∣∣ ≤ cn

}
,

where f̂n is the estimator defined in (14).
We first divide the expected loss into two pieces,

Ef Ln(f, f̂n) = Ef 1Ac
n
Ln(f, f̂n) + Ef 1AnLn(f, f̂n).(19)

Note that the set An can also be written as

An =
{
xn : max

j∈{j :Jj,k(f )≤1/cn}

∣∣∣∣Nj − n

k
Jj,k(f )

∣∣∣∣ ≤ cn

n

k

}
,

where Jj,k is the averaging operator defined in Section 2.1. Since Nj has a Poisson
distribution it follows from Lemma 4 that

P

(∣∣∣∣Nj − n

k
Jj,k(f )

∣∣∣∣ ≥ cn

n

k

)
≤ exp

(
−

(
cn

n

k

)3/(
cn

n

k
+ n

k
Jj,k(f )

)2)
.

Since cn < 1
cn

and n
k

= (logn)4 it is easy to check that

sup
|Jj,k(f )|≤1/cn

(
cn

n

k

)3/(
cn

n

k
+ n

k
Jj,k(f )

)2

≥ 1

4
c5
n(logn)4 = 1

4
(logn)3/2.

Thus since j only ranges from 1 to k it immediately follows that

P(Ac
n) ≤ k exp

(−1
4(logn)3/2) = o(n−γ ), for any γ > 1.

Now

Ln(f, f̂n) =
∫ 1

0

(f̂n − f )2

f + n−1/2f̂n

≤ n1/2
∫ 1

0
(f̂n + f ) ≤ n1/2

(
N

n
+ 1

)
.

Hence Cauchy–Schwarz yields

Ef 1Ac
n
Ln(f, f̂n) ≤ n1/2(P (Ac

n))
1/2

(
E

(
1 + N

n

)2)1/2

= o(1).



1162 M. G. LOW AND H. H. ZHOU

Now to bound the second term in (19) introduce sets En and Fn as follows:

En = {
x :

∣∣f − f̄(k)

∣∣ ≤ cn/2, x ∈ [0,1]}
and

Fn = {x : f̂n = 0, x ∈ [0,1]}.
Now the second term in (19) can be written as

Ef 1An

∫
Ec

n∪Bc
n

(f − f̂n)
2

f + n−1/2f̂n

+ Ef 1An

∫
En∩Bn∩Fn

(f − f̂n)
2

f + n−1/2f̂n

+ Ef 1An

∫
En∩Bn∩Fc

n

(f − f̂n)
2

f + n−1/2f̂n

= R1 + R2 + R3.

We take each of these terms one at a time. First it is convenient to break R1 into
two terms,

R1 = Ef 1An

∫
Ec

n

(f − f̂n)
2

f + n−1/2f̂n

+ Ef 1An

∫
Bc

n∩En

(f − f̂n)
2

f + n−1/2f̂n

= R11 + R12.

Now note that

R11 = Ef 1An

∫
Ec

n∩{x : f (x)≤1/cn}
(f − f̂n)

2

f + n−1/2f̂n

+ Ef 1An

∫
Ec

n∩{x : f (x)>1/cn}
(f − f̂n)

2

f + n−1/2f̂n

.

The definition of f̂n with 0 ≤ f̂n ≤ 1/cn then shows that

R11 ≤ √
nEf

∫
Ec

n∩{x : f (x)≤1/cn}
(f + f̂n) + Ef

∫
Ec

n∩{x:f (x)>1/cn}
f 2

1/cn

≤ 2
√

n

cn

µ(Ec
n) + cn

∫
f 2.

Now from
∫

f 2 ≤ C and the assumption (15) it follows that

R11 ≤ C

[√
n

2

cn

]
k−δ + Ccn,

where δ > 1/2 and k = n/(logn)4. Thus R11 = o(1).
Now we consider R12. It follows from the definition of Bn and En that on

Bc
n ∩ En we have

f (x) ≥ f̄(k)(x) − ∣∣f (x) − f̄(k)(x)
∣∣ ≥ 1/cn − cn/2 ≥ 1

2cn

.
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Thus R12 is bounded by

2cnEf

∫
(f − f̂n)

2 ≤ 2cn

∫
(f 2 + Ef f̂ 2

n ) ≤ 2cn

∫
(f 2 + Ef f̂

2
n).

Simple moment calculations for a Poisson random variable give∫
Ef f̂

2
n =

∫
f̄ 2

(k) + k

n
≤

∫
f 2 + k

n
.

Thus R12 = o(1) since
∫

f 2 ≤ C by assumption. Hence R1 = R11 + R12 = o(1)

uniformly over F .
We now turn to R2. Note that since f̂n = 0 on Fn,

R2 = Ef 1An

∫
En∩Bn∩Fn

(f − f̂n)
2

f + n−1/2f̂n

= Ef 1An

∫
En∩Bn∩Fn

f.

Now note that since

f (x) ≤ ∣∣f (x) − f̄(k)(x)
∣∣ + ∣∣f̄(k)(x) − f̂ n(x)

∣∣ + f̂ n(x),

it then follows from the definition of En, Bn and Fn that when An occurs

f (x) ≤ 7cn

2

and it immediately follows that R2 = o(1).
We finally turn to R3. Since

f (x) ≥ f̂ n(x) − ∣∣f̂ n(x) − f̄(k)(x)
∣∣ − ∣∣f̄(k)(x) − f (x)

∣∣,
it then follows from the definition of Bn, En and Fc

n that when An occurs f (x) ≥
cn/2 and since

|f (x) − f̂ n(x)| ≤ ∣∣f (x) − f̄(k)(x)
∣∣ + ∣∣f̄(k)(x) − f̂ n(x)

∣∣,
it follows that when An occurs that and x ∈ Bn ∩ En

|f − f̂ n| ≤ 3cn/2.

Hence R3 is bounded by

2

cn

Ef 1An

∫
En∩Bn∩Fc

n

(f − f̂ n)
2 = o(1).

The proof of (16) is complete since we have shown that R1 + R2 + R3 = o(1)

uniformly over F .
The proof of the theorem will be complete once we have shown that the as-

sumptions of the theorem hold for Besov spaces Bα
p,q(M) with αp > 1/2, p ≥ 1

and q ≥ 1. First note that if α − 1/p + 1/2 > 0 and in particular if αp > 1/2 and
p ≥ 1 then Bα

p,q(M) is compact in L2([0,1]) (see the Appendix of Johnstone [6])
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and so there is a constant C such that
∫

f 2 ≤ C for all f ∈ Bα
p,q(M). Now the

definition of the Besov norm shows that

2iα
∥∥f̄(2i+1) − f̄(2i )

∥∥
p ≤ M,

which implies for p ≥ 1 and all i1 > i0

∥∥f̄(2i1+1) − f̄(2i0 )

∥∥
p ≤

i1∑
i=i0

∥∥f̄(2i+1) − f̄(2i )

∥∥
p ≤ M

i1∑
i=i0

(
1

2iα

)
≤ M

(2i0)α

2α

2α − 1
.

Now take k = 2i0 and let i1 → ∞ to yield

kαp
∫ ∣∣f − f̄(k)

∣∣p ≤
(

M2α

2α − 1

)p

.

Then the Chebyshev inequality gives

kαpc
p
k µ

{
x :

∣∣f − f̄(k)

∣∣ > ck

} ≤ M
p
1 .

Now let ck = 1√
log k

to yield

µ

{
x :

∣∣f − f̄(k)

∣∣ 1√
log k

}
≤ M

p
1 k−αp(log k)p/2,

where M1 = M2α/(2α − 1). Assumption (15) then clearly follows for 1/2 < δ <

αp. �
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