3,538 research outputs found

    Prehospital stroke scales as screening tools for early identification of stroke and transient ischemic attack

    Get PDF
    This is the final version. Available from Wiley via the DOI in this recordBACKGROUND: Rapid and accurate detection of stroke by paramedics or other emergency clinicians at the time of first contact is crucial for timely initiation of appropriate treatment. Several stroke recognition scales have been developed to support the initial triage. However, their accuracy remains uncertain and there is no agreement which of the scales perform better. OBJECTIVES: To systematically identify and review the evidence pertaining to the test accuracy of validated stroke recognition scales, as used in a prehospital or emergency room (ER) setting to screen people suspected of having stroke. SEARCH METHODS: We searched CENTRAL, MEDLINE (Ovid), Embase (Ovid) and the Science Citation Index to 30 January 2018. We handsearched the reference lists of all included studies and other relevant publications and contacted experts in the field to identify additional studies or unpublished data. SELECTION CRITERIA: We included studies evaluating the accuracy of stroke recognition scales used in a prehospital or ER setting to identify stroke and transient Ischemic attack (TIA) in people suspected of stroke. The scales had to be applied to actual people and the results compared to a final diagnosis of stroke or TIA. We excluded studies that applied scales to patient records; enrolled only screen-positive participants and without complete 2 × 2 data. DATA COLLECTION AND ANALYSIS: Two review authors independently conducted a two-stage screening of all publications identified by the searches, extracted data and assessed the methodologic quality of the included studies using a tailored version of QUADAS-2. A third review author acted as an arbiter. We recalculated study-level sensitivity and specificity with 95% confidence intervals (CI), and presented them in forest plots and in the receiver operating characteristics (ROC) space. When a sufficient number of studies reported the accuracy of the test in the same setting (prehospital or ER) and the level of heterogeneity was relatively low, we pooled the results using the bivariate random-effects model. We plotted the results in the summary ROC (SROC) space presenting an estimate point (mean sensitivity and specificity) with 95% CI and prediction regions. Because of the small number of studies, we did not conduct meta-regression to investigate between-study heterogeneity and the relative accuracy of the scales. Instead, we summarized the results in tables and diagrams, and presented our findings narratively. MAIN RESULTS: We selected 23 studies for inclusion (22 journal articles and one conference abstract). We evaluated the following scales: Cincinnati Prehospital Stroke Scale (CPSS; 11 studies), Recognition of Stroke in the Emergency Room (ROSIER; eight studies), Face Arm Speech Time (FAST; five studies), Los Angeles Prehospital Stroke Scale (LAPSS; five studies), Melbourne Ambulance Stroke Scale (MASS; three studies), Ontario Prehospital Stroke Screening Tool (OPSST; one study), Medic Prehospital Assessment for Code Stroke (MedPACS; one study) and PreHospital Ambulance Stroke Test (PreHAST; one study). Nine studies compared the accuracy of two or more scales. We considered 12 studies at high risk of bias and one with applicability concerns in the patient selection domain; 14 at unclear risk of bias and one with applicability concerns in the reference standard domain; and the risk of bias in the flow and timing domain was high in one study and unclear in another 16.We pooled the results from five studies evaluating ROSIER in the ER and five studies evaluating LAPSS in a prehospital setting. The studies included in the meta-analysis of ROSIER were of relatively good methodologic quality and produced a summary sensitivity of 0.88 (95% CI 0.84 to 0.91), with the prediction interval ranging from approximately 0.75 to 0.95. This means that the test will miss on average 12% of people with stroke/TIA which, depending on the circumstances, could range from 5% to 25%. We could not obtain a reliable summary estimate of specificity due to extreme heterogeneity in study-level results. The summary sensitivity of LAPSS was 0.83 (95% CI 0.75 to 0.89) and summary specificity 0.93 (95% CI 0.88 to 0.96). However, we were uncertain in the validity of these results as four of the studies were at high and one at uncertain risk of bias. We did not report summary estimates for the rest of the scales, as the number of studies per test per setting was small, the risk of bias was high or uncertain, the results were highly heterogenous, or a combination of these.Studies comparing two or more scales in the same participants reported that ROSIER and FAST had similar accuracy when used in the ER. In the field, CPSS was more sensitive than MedPACS and LAPSS, but had similar sensitivity to that of MASS; and MASS was more sensitive than LAPSS. In contrast, MASS, ROSIER and MedPACS were more specific than CPSS; and the difference in the specificities of MASS and LAPSS was not statistically significant. AUTHORS' CONCLUSIONS: In the field, CPSS had consistently the highest sensitivity and, therefore, should be preferred to other scales. Further evidence is needed to determine its absolute accuracy and whether alternatives scales, such as MASS and ROSIER, which might have comparable sensitivity but higher specificity, should be used instead, to achieve better overall accuracy. In the ER, ROSIER should be the test of choice, as it was evaluated in more studies than FAST and showed consistently high sensitivity. In a cohort of 100 people of whom 62 have stroke/TIA, the test will miss on average seven people with stroke/TIA (ranging from three to 16). We were unable to obtain an estimate of its summary specificity. Because of the small number of studies per test per setting, high risk of bias, substantial differences in study characteristics and large between-study heterogeneity, these findings should be treated as provisional hypotheses that need further verification in better-designed studies.National Institute for Health Research (NIHR

    Electronic State and Magnetic Susceptibility in Orbitally Degenerate (J=5/2) Periodic Anderson Model

    Full text link
    Magnetic susceptibility in a heavy fermion systemis composed of the Pauli term (\chi_P) and the Van-Vleck term (\chi_V). The latter comes from the interband excitation, where f-orbital degeneracy is essential. In this work, we study \chi_P and \chi_V in the orbitally degenerate (J=5/2) periodic Anderson model for both the metallic and insulating cases. The effect of the correlation between f-electrons is investigated using the self-consistent second-order perturbation theory. The main results are as follows. (i) Sixfold degenerate model: both \chi_P and \chi_V are enhanced by a factor of 1/z (z is the renormalization constant). (ii) Nondegenerate model: only \chi_P is enhanced by 1/z. Thus, orbital degeneracy is indispensable for enhancement of \chi_V. Moreover, orbital degeneracy reduces the Wilson ratio and stabilizes a nonmagnetic Fermi liquid state.Comment: 4 pages, revtex, to be published in J. Phys. Soc. Jpn. (No.8

    Superfluidity in the interior-gap states

    Full text link
    We investigate superfluidity in the interior-gap states proposed by Liu and Wilczek. At weak coupling, we find the {\em gapless} interior-gap state unstable in physically accessible regimes of the parameter space, where the superfluid density is shown to be always negative. We therefore conclude that the spatially-uniform interior-gap phase is extremely unstable unless it is fully gapped; in this case, however, the state is rather similar to conventional BCS states.Comment: To appear in Physical Review

    Pseudogap Formation in the Symmetric Anderson Lattice Model

    Full text link
    We present self-consistent calculations for the self-energy and magnetic susceptibility of the 2D and 3D symmetric Anderson lattice Hamiltonian, in the fluctuation exchange approximation. At high temperatures, strong f-electron scattering leads to broad quasiparticle spectral functions, a reduced quasiparticle band gap, and a metallic density of states. As the temperature is lowered, the spectral functions narrow and a pseudogap forms at the characteristic temperature TxT_x at which the width of the quasiparticle spectral function at the gap edge is comparable to the renormalized activation energy. For T<<TxT << T_x , the pseudogap is approximately equal to the hybridization gap in the bare band structure. The opening of the pseudogap is clearly apparent in both the spin susceptibility and the compressibility.Comment: RevTeX - 14 pages and 7 figures (available on request), NRL-JA-6690-94-002

    Collective excitations of a trapped boson-fermion mixture across demixing

    Full text link
    We calculate the spectrum of low-lying collective excitations in a mesoscopic cloud formed by a Bose-Einstein condensate and a spin-polarized Fermi gas as a function of the boson-fermion repulsions. The cloud is under isotropic harmonic confinement and its dynamics is treated in the collisional regime by using the equations of generalized hydrodynamics with inclusion of surface effects. For large numbers of bosons we find that, as the cloud moves towards spatial separation (demixing) with increasing boson-fermion coupling, the frequencies of a set of collective modes show a softening followed by a sharp upturn. This behavior permits a clear identification of the quantum phase transition. We propose a physical interpretation for the dynamical transition point in a confined mixture, leading to a simple analytical expression for its location.Comment: revtex4, 9 pages, 8 postscript file

    Collective excitations in trapped boson-fermion mixtures: from demixing to collapse

    Full text link
    We calculate the spectrum of low-lying collective excitations in a gaseous cloud formed by a Bose-Einstein condensate and a spin-polarized Fermi gas over a range of the boson-fermion coupling strength extending from strongly repulsive to strongly attractive. Increasing boson-fermion repulsions drive the system towards spatial separation of its components (``demixing''), whereas boson-fermion attractions drive it towards implosion (``collapse''). The dynamics of the system is treated in the experimentally relevant collisionless regime by means of a Random-Phase approximation and the behavior of a mesoscopic cloud under isotropic harmonic confinement is contrasted with that of a macroscopic mixture at given average particle densities. In the latter case the locations of both the demixing and the collapse phase transitions are sharply defined by the same stability condition, which is determined by the softening of an eigenmode of either fermionic or bosonic origin. In contrast, the transitions to either demixing or collapse in a mesoscopic cloud at fixed confinement and particle numbers are spread out over a range of boson-fermion coupling strength, and some initial decrease of the frequencies of a set of collective modes is followed by hardening as evidenced by blue shifts of most eigenmodes. The spectral hardening can serve as a signal of the impending transition and is most evident when the number of bosons in the cloud is relatively large. We propose physical interpretations for these dynamical behaviors with the help of suitably defined partial compressibilities for the gaseous cloud under confinement.Comment: 16 pages, 7 figures, revtex

    Ground-state properties of trapped Bose-Fermi mixtures: role of exchange-correlation

    Get PDF
    We introduce Density Functional Theory for inhomogeneous Bose-Fermi mixtures, derive the associated Kohn-Sham equations, and determine the exchange-correlation energy in local density approximation. We solve numerically the Kohn-Sham system and determine the boson and fermion density distributions and the ground-state energy of a trapped, dilute mixture beyond mean-field approximation. The importance of the corrections due to exchange--correlation is discussed by comparison with current experiments; in particular, we investigate the effect of of the repulsive potential energy contribution due to exchange--correlation on the stability of the mixture against collapse.Comment: 6 pages, 4 figures (final version as published in Physical Review

    ACT: aggregation and correlation toolbox for analyses of genome tracks

    Get PDF
    We have implemented aggregation and correlation toolbox (ACT), an efficient, multifaceted toolbox for analyzing continuous signal and discrete region tracks from high-throughput genomic experiments, such as RNA-seq or ChIP-chip signal profiles from the ENCODE and modENCODE projects, or lists of single nucleotide polymorphisms from the 1000 genomes project. It is able to generate aggregate profiles of a given track around a set of specified anchor points, such as transcription start sites. It is also able to correlate related tracks and analyze them for saturation–i.e. how much of a certain feature is covered with each new succeeding experiment. The ACT site contains downloadable code in a variety of formats, interactive web servers (for use on small quantities of data), example datasets, documentation and a gallery of outputs. Here, we explain the components of the toolbox in more detail and apply them in various contexts

    The predictive accuracy of PREDICT: A personalized decision-making tool for southeast Asian women with breast cancer

    Get PDF
    10.1097/MD.0000000000000593Medicine (United States)948e59

    Self-consistent electronic structure of a dx2y2d_{x^2-y^2} and a dx2y2+idxyd_{x^2-y^2}+id_{xy} vortex

    Full text link
    We investigate quasiparticle states associated with an isolated vortex in a d-wave superconductor using a self-consistent Bogoliubov-de Gennes formalism. For a pure dx2y2d_{x^2-y^2} superconductor we find that there exist no bound states in the core; all the states are extended with continuous energy spectrum. This result is inconsistent with the existing experimental data on cuprates. We propose an explanation for this data in terms of a magnetic-field-induced dx2y2+idxyd_{x^2-y^2}+id_{xy} state recently invoked in connection with the thermal conductivity measurements on Bi2_2Sr2_2CaCu2_2O8_8.Comment: 4 pages REVTeX, 3 .ps figures included. Version to appear in PRL, May 24, 1998. Minor changes, references adde
    corecore